Littérature scientifique sur le sujet « Induction (Logic) »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Induction (Logic) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Induction (Logic)"

1

Devesas Campos, Marco, et Marcelo Fiore. « Classical logic with Mendler induction ». Journal of Logic and Computation 30, no 1 (janvier 2020) : 77–106. http://dx.doi.org/10.1093/logcom/exaa004.

Texte intégral
Résumé :
Abstract We investigate (co-) induction in classical logic under the propositions-as-types paradigm, considering propositional, second-order and (co-) inductive types. Specifically, we introduce an extension of the Dual Calculus with a Mendler-style (co-) iterator and show that it is strongly normalizing. We prove this using a reducibility argument.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kaminsky, Jack. « Logic, Induction, and Ontology ». International Studies in Philosophy 20, no 1 (1988) : 111. http://dx.doi.org/10.5840/intstudphil198820151.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Howson, Colin. « A Logic of Induction ». Philosophy of Science 64, no 2 (juin 1997) : 268–90. http://dx.doi.org/10.1086/392551.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Terwijn, Sebastiaan A. « Probabilistic Logic and Induction ». Journal of Logic and Computation 15, no 4 (1 août 2005) : 507–15. http://dx.doi.org/10.1093/logcom/exi032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Yamaguchi, Fumihiko, et Masakazu Nakanishi. « Induction in linear logic ». International Journal of Theoretical Physics 35, no 10 (octobre 1996) : 2107–16. http://dx.doi.org/10.1007/bf02302230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kuznetsov, Stepan. « Action Logic is Undecidable ». ACM Transactions on Computational Logic 22, no 2 (15 mai 2021) : 1–26. http://dx.doi.org/10.1145/3445810.

Texte intégral
Résumé :
Action logic is the algebraic logic (inequational theory) of residuated Kleene lattices. One of the operations of this logic is the Kleene star, which is axiomatized by an induction scheme. For a stronger system that uses an -rule instead (infinitary action logic), Buszkowski and Palka (2007) proved -completeness (thus, undecidability). Decidability of action logic itself was an open question, raised by Kozen in 1994. In this article, we show that it is undecidable, more precisely, -complete. We also prove the same undecidability results for all recursively enumerable logics between action logic and infinitary action logic, for fragments of these logics with only one of the two lattice (additive) connectives, and for action logic extended with the law of distributivity.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Dogan, Hamide. « Mathematical induction : deductive logic perspective ». European Journal of Science and Mathematics Education 4, no 3 (15 juillet 2016) : 315–30. http://dx.doi.org/10.30935/scimath/9473.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Greenland, Sander. « Probability Logic and Probabilistic Induction ». Epidemiology 9, no 3 (mai 1998) : 322–32. http://dx.doi.org/10.1097/00001648-199805000-00018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Arieli, Itai, et Robert J. Aumann. « The logic of backward induction ». Journal of Economic Theory 159 (septembre 2015) : 443–64. http://dx.doi.org/10.1016/j.jet.2015.07.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

K.M.MAKWANA, K. M. MAKWANA, Dr B. R. PAREKH Dr.B.R.PAREKH et SHEETAL SHINKHEDE. « Fuzzy Logic Controller Vs Pi Controller for Induction Motor Drive ». Indian Journal of Applied Research 3, no 7 (1 octobre 2011) : 315–18. http://dx.doi.org/10.15373/2249555x/july2013/97.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Induction (Logic)"

1

Wedin, Hanna. « Mathematical Induction ». Thesis, Uppsala universitet, Algebra och geometri, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414099.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hill, Alexandra. « Reasoning by analogy in inductive logic ». Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/reasoning-by-analogy-in-inductive-logic(039622d8-ab3f-418f-b46c-4d4e7a9eb6c1).html.

Texte intégral
Résumé :
This thesis investigates ways of incorporating reasoning by analogy into Pure (Unary) Inductive Logic. We start with an analysis of similarity as distance, noting that this is the conception that has received most attention in the literature so far. Chapter 4 looks in some detail at the consequences of adopting Hamming Distance as our measure of similarity, which proves to be a strong requirement. Chapter 5 then examines various adaptations of Hamming Distance and proposes a subtle modification, further-away-ness, that generates a much larger class of solutions.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lapointe, Stéphane. « Induction of recursive logic programs ». Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/7467.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rowan, Michael. « Hume, probability and induction ». Title page, contents and abstract only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phr877.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Caldon, Patrick Computer Science &amp Engineering Faculty of Engineering UNSW. « Limiting programs for induction in artificial intelligence ». Awarded by:University of New South Wales, 2008. http://handle.unsw.edu.au/1959.4/37484.

Texte intégral
Résumé :
This thesis examines a novel induction-based framework for logic programming. Limiting programs are logic programs distinguished by two features, in general they contain an infinite data stream over which induction will be performed, and in general it is not possible for a system to know when a solution for any program is correct. These facts are characteristic of some problems involving induction in artificial intelligence, and several problems in knowledge representation and logic programming have exactly these properties. This thesis presents a specification language for problems with an inductive nature, limiting programs, and a resolution based system, limiting resolution, for solving these problems. This framework has properties which guarantee that the system will converge upon a particular answer in the limit. Solutions to problems which have such an inductive property by nature can be implemented using the language, and solved with the solver. For instance, many classification problems are inductive by nature. Some generalized planning problems also have the inductive property. For a class of generalized planning problems, we show that identifying a collection of domains where a plan reaches a goal is equivalent to producing a plan. This thesis gives examples of both. Limiting resolution works by a generate-and-test strategy, creating a potential solution and iteratively looking for a contradiction with the growing stream of data provided. Limiting resolution can be implemented by modifying conventional PROLOG technology. The generateand- test strategy has some inherent inefficiencies. Two improvements have arisen from this work; the first is a tabling strategy which records previously failed attempts to produce a solution and thereby avoids redundant test steps. The second is based on the heuristic observation that for some problems the size of the test step is proportional to the closeness of the generated potential-solution to the real solution, in a suitable metric. The observation can be used to improve the performance of limiting resolution. Thus this thesis describes, from theoretical foundations to implementation, a coherent methodology for incorporating induction into existing general A.I. programming techniques, along with examples of how to perform such tasks.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tappert, Peter M. « Damage identification using inductive learning ». Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-05092009-040651/.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kimber, Timothy. « Learning definite and normal logic programs by induction on failure ». Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9961.

Texte intégral
Résumé :
This thesis presents two novel inductive logic programming (ILP) approaches, based on the notion of a connected theory. A connected theory contains clauses that depend on one another, either directly or via clauses in the background knowledge. Generalisation of such a theory is proved to be a sound and complete method for learning definite ILP hypotheses. The Induction on Failure (IOF) proof procedure, based on the connected theory generalisation method, adds secondary examples into the hypothesis, and generates auxiliary clauses to explain them. These concepts, novel to IOF, address the issues of incompleteness present in previous definite ILP methods. The concept of the connected theory is also applied to the non-monotonic, normal program setting. Thus, the method of generalisation of a normal connected theory is presented. Fundamental to this is the assertion that a partial non-monotonic hypothesis must include both positive and negative information, which the general hypothesis should preserve. This has resulted in, as far as the author is aware, the most complete semantic characterisation available of non-monotonic ILP using a bridge formula. It is proved that generalisation of such a formula to a set of completed definitions is a sound method of generating normal program hypotheses. In the course of establishing a completeness result for this latter approach, the semantics of the supported consequences of a normal program are defined, and the support tree method is presented and shown to be a sound and complete proof procedure for supported consequences. Using these results, it is shown that, for function-free programs, any correct hypothesis for which the examples are supported consequences of the learned program can be derived via a normal connected theory.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Barnes, Valerie Elizabeth. « The quality of human judgment : an alternative perspective / ». Thesis, Connect to this title online ; UW restricted, 1985. http://hdl.handle.net/1773/9139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Syed, Altaf Ahmad. « Applied Fuzzy Logic Controls for Improving Dynamic Response of Induction Machines ». Connect to resource online, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1219671348.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Barker, Gillian Abernathy. « Abstraction, analogy and induction : toward a general account of ampliative inference / ». Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1997. http://wwwlib.umi.com/cr/ucsd/fullcit?p9820857.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Induction (Logic)"

1

Millgram, Elijah. Practical induction. Cambridge, Mass : Harvard University Press, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

I, Craig, et Cohn A. G, dir. The logic of induction. Chichester [England] : Halsted Press, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gabbay, Dov M. Inductive Logic. San Diego : North Holland [Imprint], 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kawalec, Paweł. Structural reliabilism : Inductive logic as a theory of justification. Dordrecht : Kluwer Academic Publishers, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Baird, Davis. Inductive logic : Probability and statistics. Englewood Cliffs, N.J : Prentice Hall, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zhang, H. Automated Mathematical Induction. Dordrecht : Springer Netherlands, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Williams, Donald Cary. The ground of induction. Cambridge, MA : Harvard University Press, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Skyrms, Brian. Choice and chance : An introduction to inductive logic. 4e éd. Australia : Wadsworth/Thomson Learning, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Skyrms, Brian. Choice and chance : An introduction to inductive logic. 3e éd. Belmont, Calif : Wadsworth Pub. Co., 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

A, Flach Peter, et Kakas Antonis C, dir. Abduction and induction : Essays on their relation and integration. Dordrecht : Kluwer Academic, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Induction (Logic)"

1

Genesereth, Michael, et Eric Kao. « Induction ». Dans Introduction to Logic, 111–21. Cham : Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-01798-8_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Genesereth, Michael, et Eric Kao. « Induction ». Dans Introduction to Logic, 121–36. Cham : Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-031-01799-5_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Genesereth, Michael, et Eric J. Kao. « Induction ». Dans Introduction to Logic, 121–37. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-031-01801-5_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Anthony, Simon, et Alan M. Frisch. « Cautious induction in inductive logic programming ». Dans Inductive Logic Programming, 45–60. Berlin, Heidelberg : Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3540635149_34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kotlarski, Henryk. « Transfinite Induction ». Dans Trends in Logic, 73–87. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28921-8_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sethy, Satya Sundar. « Induction ». Dans Introduction to Logic and Logical Discourse, 243–59. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2689-0_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Adriaans, Pieter, et Erik de Haas. « Grammar Induction as Substructural Inductive Logic Programming ». Dans Learning Language in Logic, 127–42. Berlin, Heidelberg : Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-40030-3_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Falke, Stephan, et Deepak Kapur. « Inductive Decidability Using Implicit Induction ». Dans Logic for Programming, Artificial Intelligence, and Reasoning, 45–59. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11916277_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Cellucci, Carlo. « Induction and Analogy ». Dans Logic, Argumentation & ; Reasoning, 331–46. Dordrecht : Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6091-2_20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Otero, Ramón P. « Induction of Stable Models ». Dans Inductive Logic Programming, 193–205. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44797-0_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Induction (Logic)"

1

EELLS, ELLERY. « POPPER AND MILLER, AND INDUCTION AND DEDUCTION ». Dans 7th and 8th Asian Logic Conferences. CO-PUBLISHED WITH SINGAPORE UNIVERSITY PRESS, 2003. http://dx.doi.org/10.1142/9789812705815_0006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Eskander, M. N. « Fuzzy logic control of saturated induction machine ». Dans 6th International Workshop on Advanced Motion Control. Proceedings. IEEE, 2000. http://dx.doi.org/10.1109/amc.2000.862878.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Baunsgaard Kristensen, Magnus, Rasmus Ejlers Mogelberg et Andrea Vezzosi. « Greatest HITs : Higher inductive types in coinductive definitions via induction under clocks ». Dans LICS '22 : 37th Annual ACM/IEEE Symposium on Logic in Computer Science. New York, NY, USA : ACM, 2022. http://dx.doi.org/10.1145/3531130.3533359.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Azgomi, Hamid Fekri, et Javad Poshtan. « Induction motor stator fault detection via fuzzy logic ». Dans 2013 21st Iranian Conference on Electrical Engineering (ICEE). IEEE, 2013. http://dx.doi.org/10.1109/iraniancee.2013.6599711.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Venkatachalam, M., et S. Thangavel. « Fuzzy logic based performance improvement of induction motor ». Dans 2012 IEEE International Conference on Engineering Education : Innovative Practices and Future Trends (AICERA). IEEE, 2012. http://dx.doi.org/10.1109/aicera.2012.6306749.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Shetgaonkar, Satej Santosh. « Fault diagnosis in induction motor using fuzzy logic ». Dans 2017 International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2017. http://dx.doi.org/10.1109/iccmc.2017.8282693.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kuzelka, Ondrej, Jesse Davis et Steven Schockaert. « Induction of Interpretable Possibilistic Logic Theories from Relational Data ». Dans Twenty-Sixth International Joint Conference on Artificial Intelligence. California : International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/160.

Texte intégral
Résumé :
The field of statistical relational learning (SRL) is concerned with learning probabilistic models from relational data. Learned SRL models are typically represented using some kind of weighted logical formulas, which makes them considerably more interpretable than those obtained by e.g. neural networks. In practice, however, these models are often still difficult to interpret correctly, as they can contain many formulas that interact in non-trivial ways and weights do not always have an intuitive meaning. To address this, we propose a new SRL method which uses possibilistic logic to encode relational models. Learned models are then essentially stratified classical theories, which explicitly encode what can be derived with a given level of certainty. Compared to Markov Logic Networks (MLNs), our method is faster and produces considerably more interpretable models.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Abdel-Rahim, Naser M. B. « Fuzzy-Logic control of unsymmetrical two-phase induction motor ». Dans IECON 2012 - 38th Annual Conference of IEEE Industrial Electronics. IEEE, 2012. http://dx.doi.org/10.1109/iecon.2012.6388925.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Madbouly, S. O., H. F. Soliman, H. M. Hasanien et M. A. Badr. « Fuzzy logic control of brushless doubly fed induction generator ». Dans 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010). Institution of Engineering and Technology, 2010. http://dx.doi.org/10.1049/cp.2010.0085.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Johnston, Benjamin, et Guido Governatori. « Induction of defeasible logic theories in the legal domain ». Dans the 9th international conference. New York, New York, USA : ACM Press, 2003. http://dx.doi.org/10.1145/1047788.1047834.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Induction (Logic)"

1

Lukac, Martin. Quantum Inductive Learning and Quantum Logic Synthesis. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.2316.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Küsters, Ralf, et Ralf Molitor. Computing Least Common Subsumers in ALEN. Aachen University of Technology, 2000. http://dx.doi.org/10.25368/2022.110.

Texte intégral
Résumé :
Computing the least common subsumer (lcs) in description logics is an inference task first introduced for sublanguages of CLASSIC. Roughly speaking, the lcs of a set of concept descriptions is the most specific concept description that subsumes all of the input descriptions. As such, the lcs allows to extract the commonalities from given concept descriptions, a task essential for several applications like, e.g., inductive learning, information retrieval, or the bottom-up construction of KR-knowledge bases. Previous work on the lcs has concentrated on description logics that either allow for number restrictions or for existential restrictions. Many applications, however, require to combine these constructors. In this work, we present an lcs algorithm for the description logic ALEN, which allows for both constructors (as well as concept conjunction, primitive negation, and value restrictions). The proof of correctness of our lcs algorithm is based on an appropriate structural characterization of subsumption in ALEN also introduced in this paper.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Küsters, Ralf, et Ralf Molitor. Computing Least Common Subsumers in ALEN. Aachen University of Technology, 2000. http://dx.doi.org/10.25368/2022.110.

Texte intégral
Résumé :
Computing the least common subsumer (lcs) in description logics is an inference task first introduced for sublanguages of CLASSIC. Roughly speaking, the lcs of a set of concept descriptions is the most specific concept description that subsumes all of the input descriptions. As such, the lcs allows to extract the commonalities from given concept descriptions, a task essential for several applications like, e.g., inductive learning, information retrieval, or the bottom-up construction of KR-knowledge bases. Previous work on the lcs has concentrated on description logics that either allow for number restrictions or for existential restrictions. Many applications, however, require to combine these constructors. In this work, we present an lcs algorithm for the description logic ALEN, which allows for both constructors (as well as concept conjunction, primitive negation, and value restrictions). The proof of correctness of our lcs algorithm is based on an appropriate structural characterization of subsumption in ALEN also introduced in this paper.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie