Pour voir les autres types de publications sur ce sujet consultez le lien suivant : In0.53Ga0.47As(001).

Articles de revues sur le sujet « In0.53Ga0.47As(001) »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « In0.53Ga0.47As(001) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Georgakilas, Alexandros, Athanasios Dimoulas, Aristotelis Christou et John Stoemenos. « Alloy clustering and defect structure in the molecular beam epitaxy of In0.53Ga0.47As on silicon ». Journal of Materials Research 7, no 8 (août 1992) : 2194–204. http://dx.doi.org/10.1557/jmr.1992.2194.

Texte intégral
Résumé :
The MBE growth of InxGa1−xAs (x ∼ 0.53) on silicon substrates has been investigated emphasizing the effects of substrate orientation and buffer layers between In0.53Ga0.47As and Si. It is shown that growth on silicon substrates misoriented from (001) toward a [110] direction eliminates the presence of antiphase domains. The best In0.53Ga0.47As surface morphology was obtained when a 0.9 μm epitaxial Si buffer was initially grown, followed by a pre-exposure of the silicon surface to As4 at 350 °C, followed by the growth of In0.53Ga0.47As. Threading dislocations, stacking faults, low-angle grain boundaries, and spinodal decomposition were observed by TEM in the InGaAs layers. The spinodal contrast scale was shown to depend on the buffer type and the total InGaAs thickness. Thick buffers consisted of GaAs or graded InxGa1−xAs layers, and large In0.53Ga0.47As thicknesses favor the development of a coarse-scale spinodal decomposition with periodicity around 0.1 μm. Thin GaAs buffers or direct In0.53Ga0.47As growth on Si may result in a fine-scale decomposition of periodicity ∼10 nm. The principal strain direction of the spinodal decomposition appeared along the [1$\overline 1$0] direction, parallel to the vicinal Si surface step edges. InGaAs immiscibility affects the InGaAs growth process, favoring a 3-D growth mode. X-ray diffraction measurements and photoreflectance spectra indicated that the sample quality was improved for samples exhibiting a fine-scale spinodal decomposition contrast even if they contained a higher dislocation density. Threading dislocations run almost parallel to the [001] growth axis and are not affected by strained layers and short period (InAs)3/(GaAs)3 superlattices. The lowest double crystal diffractometry FWHM for the (004) InGaAs reflection was 720 arc sec and has been obtained growing InGaAs directly on Si, while the lowest dislocation density was 3 × 109 cm−2 and was obtained using a 1.5 μm GaAs buffer before the In0.53Ga0.47As deposition.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Liao, X. Z., Y. T. Zhu, Y. M. Qiu, D. Uhl et H. F. Xu. « Quantum dot/substrate interaction in InAs/In0.53Ga0.47As/InP(001) ». Applied Physics Letters 84, no 4 (26 janvier 2004) : 511–13. http://dx.doi.org/10.1063/1.1642754.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hybertsen, Mark S. « Interface strain at the lattice-matched In0.53Ga0.47As/InP(001) heterointerface ». Journal of Vacuum Science & ; Technology B : Microelectronics and Nanometer Structures 8, no 4 (juillet 1990) : 773. http://dx.doi.org/10.1116/1.584964.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Shen, Jian, Jonathon B. Clemens, Evgueni A. Chagarov, Darby L. Feldwinn, Wilhelm Melitz, Tao Song, Sarah R. Bishop, Andrew C. Kummel et Ravi Droopad. « Structural and electronic properties of group III Rich In0.53Ga0.47As(001) ». Surface Science 604, no 19-20 (septembre 2010) : 1757–66. http://dx.doi.org/10.1016/j.susc.2010.07.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Klenov, Dmitri O., Joshua M. Zide, Jeramy D. Zimmerman, Arthur C. Gossard et Susanne Stemmer. « Interface atomic structure of epitaxial ErAs layers on (001) In0.53Ga0.47As and GaAs ». Applied Physics Letters 86, no 24 (13 juin 2005) : 241901. http://dx.doi.org/10.1063/1.1947910.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Shen, Jian, Darby L. Winn, Wilhelm Melitz, Jonathon B. Clemens et Andrew C. Kummel. « Real Space Surface Reconstructions of Decapped As-rich In0.53Ga0.47As(001)-(2×4) ». ECS Transactions 16, no 5 (18 décembre 2019) : 463–68. http://dx.doi.org/10.1149/1.2981627.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lee, Jennifer Y., Chris Pearson et Joanna M. Millunchick. « Arsenic dependence on the morphology of ultrathin GaAs layers on In0.53Ga0.47As∕InP(001) ». Journal of Applied Physics 103, no 10 (15 mai 2008) : 104309. http://dx.doi.org/10.1063/1.2917276.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Seo, Jae Hwa, Young Jun Yoon, Seongjae Cho, Heung-Sik Tae, Jung-Hee Lee et In Man Kang. « Analyses on RF Performances of Silicon-Compatible InGaAs-Based Planar-Type and Fin-Type Junctionless Field-Effect Transistors ». Journal of Nanoscience and Nanotechnology 15, no 10 (1 octobre 2015) : 7615–19. http://dx.doi.org/10.1166/jnn.2015.11141.

Texte intégral
Résumé :
The In0.53Ga0.47As-based planar-type junctionless fieled-effect transistor (JLFET) and fin-type FET (FinFET) have been designed and characterized by technology computer-aided design (TCAD) simulations. Because of their attractive material characteristics, the combination of In0.53Ga0.47As and InP has been adopted in some of the most recent semiconductor devices. In particular, the In0.53Ga0.47As-based transistor using an InP buffer is highly attractive due to its superior electrostatic performance which results from the by particular characteristics of the In0.53Ga0.47As material. In this paper, we focus on using small-signal RF modeling and Y-parameter extraction methods th extract various RF characteristics, such as gate capacitance, transconductance (gm), cut-off frequency (fT), and maximum oscillation frequency (fmax). The proposed In0.53Ga0.47As-based FinFET exhibits an on-state current (Ion) of 1030 μA/μm and an off-state current (Ioff) of 1.2×10−13 A/μm with a threshold voltage (Vth) of 0.1 V, and a subthreshold swing (S) of 96 mV/dec. In addition, fT and fmax are determined to be 243 GHz and 1.6 THz, respectively.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chen, Hu, et Jun Chen. « PbS QDs/Al2O3/In0.53Ga0.47As infrared photodetector with fast response and high sensitivity ». Applied Physics Letters 121, no 18 (31 octobre 2022) : 181106. http://dx.doi.org/10.1063/5.0117223.

Texte intégral
Résumé :
Due to the size effect, multi-exciton effect, confinement effect, and tunable bandgap, quantum dots (QDs) have gradually been used in near-infrared photodetectors. In this paper, PbS QDs were integrated with In0.53Ga0.47As materials, and a PbS QDs/In0.53Ga0.47As hybrid photodetector with Al2O3 was investigated. Passivation of PbS QDs by ligand replacement and insertion of Al2O3 reduced the dark current density from 9.24 × 10−6 to 4.67 × 10−6 A·cm−2, which enabled the detector to obtain a high responsivity of 0.97 A·W−1 under −1 V bias, and the detectivity reached 2.21 × 1010 Jones. In addition, we found that the PbS QDs/In0.53Ga0.47As near-infrared photodetector with Al2O3 obtained a fast rise and fall time, which could respond to high-frequency signals. The findings will have application in the PbS QDs/In0.53Ga0.47As hybrid near-infrared photodetectors.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Shen, Jian, Darby L. Feldwinn, Wilhelm Melitz, Ravi Droopad et Andrew C. Kummel. « Scanning tunneling microscopy study of the interfacial bonding structures of Ga2O and In2O/In0.53Ga0.47As(001) ». Microelectronic Engineering 88, no 4 (avril 2011) : 377–82. http://dx.doi.org/10.1016/j.mee.2010.10.023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Peiner, E., H. H. Wehmann, H. Iber, S. Mo, G. P. Tang, A. Bartels, A. Schlachetzki, A. Koch, K. Dettmer et M. Hollfelder. « High-quality In0.53Ga0.47As on exactly (001)-oriented Si grown by metal-organic vapour-phase epitaxy ». Journal of Crystal Growth 172, no 1-2 (février 1997) : 44–52. http://dx.doi.org/10.1016/s0022-0248(96)00736-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Fang, Qianglong, Yang Shen, Zesen Liu, Xiaodong Yang, Shuqin Zhang, Liang Chen, Lingze Duan et Shiqing Xu. « A DFT study on optoelectronic properties of near-infrared In0.53Ga0.47As (001), (011) and (111) surfaces ». Superlattices and Microstructures 149 (janvier 2021) : 106771. http://dx.doi.org/10.1016/j.spmi.2020.106771.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Shin, Byungha, Jonathon B. Clemens, Michael A. Kelly, Andrew C. Kummel et Paul C. McIntyre. « Arsenic decapping and half cycle reactions during atomic layer deposition of Al2O3 on In0.53Ga0.47As(001) ». Applied Physics Letters 96, no 25 (21 juin 2010) : 252907. http://dx.doi.org/10.1063/1.3452336.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Liu, Hu, Lin-An Yang, Huawei Zhang, Bingtao Zhang et Wenting Zhang. « An In0.53Ga0.47As/In0.52Al0.48As/In0.53Ga0.47As double hetero-junction junctionless TFET ». Japanese Journal of Applied Physics 60, no 7 (10 juin 2021) : 074001. http://dx.doi.org/10.35848/1347-4065/ac0611.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Sala, Elisa M., Max Godsland, Young In Na, Aristotelis Trapalis et Jon Heffernan. « Droplet epitaxy of InAs/InP quantum dots via MOVPE by using an InGaAs interlayer ». Nanotechnology 33, no 6 (19 novembre 2021) : 065601. http://dx.doi.org/10.1088/1361-6528/ac3617.

Texte intégral
Résumé :
Abstract InAs quantum dots (QDs) are grown on an In0.53Ga0.47As interlayer and embedded in an InP(100) matrix. They are fabricated via droplet epitaxy (DE) in a metal organic vapor phase epitaxy (MOVPE) reactor. Formation of metallic indium droplets on the In0.53Ga0.47As lattice-matched layer and their crystallization into QDs is demonstrated for the first time in MOVPE. The presence of the In0.53Ga0.47As layer prevents the formation of an unintentional non-stoichiometric 2D layer underneath and around the QDs, via suppression of the As-P exchange. The In0.53Ga0.47As layer affects the surface diffusion leading to a modified droplet crystallization process, where unexpectedly the size of the resulting QDs is found to be inversely proportional to the indium supply. Bright single dot emission is detected via micro-photoluminescence at low temperature, ranging from 1440 to 1600 nm, covering the technologically relevant telecom C-band. Transmission electron microscopy investigations reveal buried quantum dots with truncated pyramid shape without defects or dislocations.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Hoang, Thoan Nguyen. « INVESTIGATION OF CHARGE TRAPS AT Al-DOPED HfO2/(100)InGaAs INTERFACE BY USING CAPACITANCE AND CONDUCTANCE METHODS ». Vietnam Journal of Science and Technology 56, no 1A (4 mai 2018) : 110. http://dx.doi.org/10.15625/2525-2518/56/1a/12511.

Texte intégral
Résumé :
In this study, capacitance and conductance methods were used to investigate the charge traps at a HfO2/(100)InGaAs interface with an atomic layer deposition HfO2 layer doped with Al2O3 by co-deposition technique. The effect of Al doping on the quality of the HfO2/In0.53Ga0.47As interface will be evaluated. The density of interface traps (D­it) near In0.53Ga0.47As midgap is close to 2×1012 cm−2eV−1. Based on comparison to the HfO2/In0.53Ga0.47As interface without Al2O3 interfacial passivation where the value Dit∼1013 cm−2eV−1 is encountered near the midgap, we can conclude that the presence of Al2O3 passivation noticeably improves the interface quality.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Kim, Tae-Woo. « Effects of Equivalent-Oxide-Thickness and Fin-Width Scaling on In0.53Ga0.47As Tri-Gate Metal-Oxide-Semiconductor-Field-Effect-Transistors with Al2O3/HfO2 for Low-Power Logic Applications ». Electronics 9, no 1 (26 décembre 2019) : 29. http://dx.doi.org/10.3390/electronics9010029.

Texte intégral
Résumé :
We created tri-gate sub-100 nm In0.53Ga0.47As metal-oxide-semiconductor-field-effect-transistors (MOSFETs) with a bi-layer Al2O3/HfO2 gate stack and investigated the scaling effects on equivalent-oxide-thickness (EOT) and fin-width (Wfin) at gate lengths of sub-100 nm. For Lg = 60 nm In0.53Ga0.47As tri-gate MOSFETs, EOT and Wfin scaling were effective for improving electrostatic immunities such as subthreshold swing and drain-induced-barrier-lowering. Reliability characterization for In0.53Ga0.47As Tri-Gate MOSFETs using constant-voltage-stress (CVS) at 300K demonstrates slightly worse VT degradation compared to planar InGaAs MOSFET with the same gate stack and EOT. This is due to the effects of both of the etched fin’s sidewall interfaces.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Peric, Nemanja, Corentin Durand, Maxime Berthe, Yan Lu, Kekeli N'Konou, Roland Coratger, Isabelle Lefebvre et al. « Direct measurement of band offsets on selective area grown In0.53Ga0.47As/InP heterojunction with multiple probe scanning tunneling microscopy ». Applied Physics Letters 121, no 19 (7 novembre 2022) : 192104. http://dx.doi.org/10.1063/5.0104807.

Texte intégral
Résumé :
The knowledge of the band alignment in semiconductor heterostructures is crucial, as it governs carrier confinement with many impacts on the performances of devices. By controlling the direction of the current flow in in-plane In0.53Ga0.47As/InP heterostructure nanowires, either horizontally along the nanowires or vertically into the InP substrate with low temperature multiple-probe tunneling spectroscopy, a direct measurement of the band offsets at the buried In0.53Ga0.47As/InP heterointerface is performed. Despite the unavoidable processing steps involved in selective area epitaxy, conduction and valence band offsets of 0.21 ± 0.01 and 0.40 ± 0.01 eV are, respectively, found, indicating the formation of an interface with a quality comparable to two-dimensional In0.53Ga0.47As/InP heterostructures.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Molle, A., E. Cianci, A. Lamperti, C. Wiemer, S. Baldovino, L. Lamagna, S. Spiga et al. « Trimethylaluminum-based Atomic Layer Deposition of MO2 (M=Zr, Hf) : Gate Dielectrics on In0.53Ga0.47As(001) Substrates ». ECS Transactions 50, no 13 (15 mars 2013) : 11–19. http://dx.doi.org/10.1149/05013.0011ecst.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Yoo, Han Bin, Seong Kwang Kim, Junyeap Kim, Jintae Yu, Sung-Jin Choi, Dae Hwan Kim et Dong Myong Kim. « Characterization of Subgap Density-of-States by Sub-Bandgap Optical Charge Pumping in In0.53Ga0.47As Metal-Oxide-Semiconductor Field-Effect Transistors ». Journal of Nanoscience and Nanotechnology 20, no 7 (1 juillet 2020) : 4287–91. http://dx.doi.org/10.1166/jnn.2020.17785.

Texte intégral
Résumé :
We report an experimental characterization of the interface states (Dit(E)) by using the subthreshold drain current with optical charge pumping effect in In0.53Ga0.47As metal-oxide-semiconductor fieldeffect transistors (MOSFETs). The interface states are derived from the difference between the dark and photo states of the current–voltage characteristics. We used a sub-bandgap photon (i.e., with the photon energy lower than the bandgap energy, Eph < Eg) to optically excite trapped carriers over the bandgap in In0.53Ga0.47As MOSFETs. We combined a gate bias-dependent capacitance model to determine the channel length-independent oxide capacitance. Then, we estimated the channel length-independent interface states in In0.53Ga0.47As MOSFETs having different channel lengths (Lch = 5, 10, and 25 [μm]) for a fixed overlap length (Lov = 5 [μm]).
Styles APA, Harvard, Vancouver, ISO, etc.
21

Osaka, Jiro, Koichi Maezawa et andMasafumi Yamamoto. « Highly Uniform Regrown In0.53Ga0.47As/AlAs/InAs Resonant Tunneling Diodes on In0.53Ga0.47As ». Japanese Journal of Applied Physics 38, Part 1, No. 2B (28 février 1999) : 1204–7. http://dx.doi.org/10.1143/jjap.38.1204.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Yablonovitch, E., R. Bhat, C. E. Zah, T. J. Gmitter et M. A. Koza. « Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces ». Applied Physics Letters 60, no 3 (20 janvier 1992) : 371–73. http://dx.doi.org/10.1063/1.106660.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Contreras, Yissel, Pablo Mancheno-Posso et Anthony J. Muscat. « Comparison of the Chemical Passivation of GaAs, In0.53Ga0.47As, and InSb with 1-Eicosanethiol ». Solid State Phenomena 255 (septembre 2016) : 55–60. http://dx.doi.org/10.4028/www.scientific.net/ssp.255.55.

Texte intégral
Résumé :
Self-assembled 1-eicosanethiolate layers were deposited on the oxide-free (100) crystal planes of GaAs, In0.53Ga0.47As, and InSb to protect the surfaces. The layer prevented re-oxidation in air for 30 min on GaAs but only 8 min on In0.53Ga0.47As based on the O 1s x-ray photoelectron spectroscopy state. The layer protected InSb from reoxidation for only 4 min based on the O Auger state. Well-ordered monolayers formed on GaAs and In0.53Ga0.47As based on transmission Fourier transform infrared (FTIR) spectroscopy. A partially ordered layer was formed on InSb based on attenuated total reflection FTIR. The increased reoxidation rate of InGaAs and InSb is due to the larger lattice parameter of these surfaces and their In content, which forms weaker bonds to S, Ga, and Sb compared to Ga bonding to As and S.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Leibovitch, M. « Reflection anisotropy spectroscopy, surface photovoltage spectroscopy, and contactless electroreflectance investigation of the InP/In0.53Ga0.47As(001) heterojunction system ». Journal of Vacuum Science & ; Technology B : Microelectronics and Nanometer Structures 14, no 4 (juillet 1996) : 3089. http://dx.doi.org/10.1116/1.589069.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Ambrée, P., et B. Gruska. « Cd diffusion in In0.53Ga0.47As ». Crystal Research and Technology 24, no 3 (mars 1989) : 299–305. http://dx.doi.org/10.1002/crat.2170240312.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Lee, D. H., Sheng S. Li, N. J. Sauer et T. Y. Chang. « High quality In0.53Ga0.47As Schottky diode formed by graded superlattice of In0.53Ga0.47As/In0.52Al0.48As ». Applied Physics Letters 54, no 19 (8 mai 1989) : 1863–65. http://dx.doi.org/10.1063/1.101261.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Tamura, Hirotaka, Akira Yoshida, Shunichi Muto et Shinya Hasuo. « Schottky Barrier Height of Al/n-In0.53Ga0.47As and Nb/n-In0.53Ga0.47As Diodes ». Japanese Journal of Applied Physics 26, Part 2, No. 1 (20 janvier 1987) : L7—L9. http://dx.doi.org/10.1143/jjap.26.l7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Lee, In-Geun, Hyeon-Bhin Jo, Ji-Min Baek, Sang-Tae Lee, Su-Min Choi, Hyo-Jin Kim, Wan-Soo Park et al. « Lg = 50 nm Gate-All-Around In0.53Ga0.47As Nanosheet MOSFETs with Regrown In0.53Ga0.47As Contacts ». Electronics 11, no 17 (31 août 2022) : 2744. http://dx.doi.org/10.3390/electronics11172744.

Texte intégral
Résumé :
In this paper, we report the fabrication and characterization of Lg = 50 nm gate-all-around (GAA) In0.53Ga0.47As nanosheet (NS) metal-oxide-semiconductor field-effect transistors (MOSFETs) with sub-20 nm nanosheet thickness that were fabricated through an S/D regrowth process. The fabricated GAA In0.53Ga0.47As NS MOSFETs feature a bi-layer high-k dielectric layer of Al2O3/HfO2, together with an ALD-grown TiN metal-gate in a cross-coupled manner. The device with Lg = 50 nm, WNS = 200 nm and tNS = 10 nm exhibited an excellent combination of subthreshold-swing behavior (S < 80 mV/dec.) and carrier transport properties (gm_max = 1.86 mS/mm and ION = 0.4 mA/mm) at VDS = 0.5 V. To the best of our knowledge, this is the first demonstration of InxGa1-xAs GAA NS MOSFETs that would be directly applicable for their use in future multi-bridged channel (MBC) devices.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Maeda, Tatsuro, Kazuaki Oishi, Hiroto Ishii, Hiroyuki Ishii, Wen Hsin Chang, Tetsuji Shimizu, Akira Endoh, Hiroki Fujishiro et Takashi Koida. « Schottky barrier contact on In0.53Ga0.47As with short-wave infrared transparent conductive oxide ». Applied Physics Letters 121, no 23 (5 décembre 2022) : 232102. http://dx.doi.org/10.1063/5.0129445.

Texte intégral
Résumé :
In this study, we fabricate and investigate Schottky barrier contact on n- and p-type In0.53Ga0.47As with transparent conductive oxide (TCO) that transmits light from the visible to short-wave infrared (SWIR) region. The TCO/p-In0.53Ga0.47As contact exhibits explicit rectifying behavior in current–voltage measurement, with an effective Schottky barrier height of 0.587 eV ( I– V) and 0.567 eV ( C– V). Conversely, the TCO/n-In0.53Ga0.47As exhibits the Ohmic behavior. From high-resolution transmission electron microscopy observations, we identified two types of interfacial layers between TCO and InGaAs: an In/Ga-rich InGaAs oxide layer and an In/Ga-deficient InGaAs layer. These interfacial layers may have a significant impact on the performance of the Schottky barrier contact. An ultra-thin Ni-layer insertion at the TCO/n+-InGaAs interface reduces the contact resistivity by more than an order of magnitude while maintaining high transparency. The TCO/p-InGaAs Schottky barrier contact also performs broadband light detection from the visible to SWIR region in a front-side illumination manner, which is highly promising for detecting wavelengths covering the optical communication band.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Nashimoto, Y. « Investigation of molecular beam epitaxial In0.53Ga0.47As regrown on liquid phase epitaxial In0.53Ga0.47As/InP ». Journal of Vacuum Science & ; Technology B : Microelectronics and Nanometer Structures 4, no 2 (mars 1986) : 540. http://dx.doi.org/10.1116/1.583423.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Галиев, Г. Б., М. М. Грехов, Г. Х. Китаева, Е. А. Климов, А. Н. Клочков, О. С. Коленцова, В. В. Корниенко, К. А. Кузнецов, П. П. Мальцев et С. С. Пушкарев. « Генерация терагерцевого излучения в низкотемпературных эпитаксиальных пленках InGaAs на подложках InP с ориентациями (100) и (411) A ». Физика и техника полупроводников 51, no 3 (2017) : 322. http://dx.doi.org/10.21883/ftp.2017.03.44201.8312.

Texte intégral
Résumé :
Методом терагерцевой спектроскопии временного разрешения исследованы спектр и волновые формы импульсов широкополосного терагерцевого излучения, генерируемых низкотемпературными эпитаксиальными пленками In0.53Ga0.47As при накачке фемтосекундными лазерными импульсами. Пленки In0.53Ga0.47As были получены методом молекулярно-лучевой эпитаксии при температуре 200oC и при различных давлениях мышьяка на подложках InP с ориентацией (100) и впервые на подложках InP с ориентацией (411)A. Исследованы морфология поверхности образцов с помощью атомно-силовой микроскопии и их структурное совершенство с помощью высокоразрешающей рентгеновской дифрактометрии. Обнаружено, что амплитуда терагерцевого излучения от слоев LT-InGaAs на подложках InP (411)A в 3-5 раз больше, чем от таких же слоев на подложках InP (100). DOI: 10.21883/FTP.2017.03.44201.8312
Styles APA, Harvard, Vancouver, ISO, etc.
32

Shin, Seung Heon, Jae-Phil Shim, Hyunchul Jang et Jae-Hyung Jang. « Fabrication and Characterization of In0.53Ga0.47As/InAs/In0.53Ga0.47As Composite Channel Metamorphic HEMTs (mHEMTs) on a GaAs Substrate ». Micromachines 14, no 1 (25 décembre 2022) : 56. http://dx.doi.org/10.3390/mi14010056.

Texte intégral
Résumé :
In this work, we successfully demonstrated In0.53Ga0.47As/InAs/In0.53Ga0.47As composite channel metamorphic high electron mobility transistors (mHEMTs) on a GaAs substrate. The fabricated mHEMTs with a 100 nm gate length exhibited excellent DC and logic characteristics such as VT = −0.13 V, gm,max = 949 mS/mm, subthreshold swing (SS) = 84 mV/dec, drain-induced barrier lowering (DIBL) = 89 mV/V, and Ion/Ioff ratio = 9.8 × 103 at a drain-source voltage (VDS) = 0.5 V. In addition, the device exhibited excellent high-frequency characteristics, such as fT/fmax = 261/304 GHz for the measured result and well-matched modeled fT/fmax = 258/309 GHz at VDS = 0.5 V, which is less power consumption compared to other material systems. These high-frequency characteristics are a well-balanced demonstration of fT and fmax in the mHEMT structure on a GaAs substrate.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Wertheim, G. K. « Synchrotron radiation photoemission study of interfacial electronic structure of HfO2 on In0.53Ga0.47As(001)-4 × 2 from atomic layer deposition ». Applied Physics Letters 104, no 4 (27 janvier 2014) : 042904. http://dx.doi.org/10.1063/1.4863440.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Long, A. P., P. H. Beton et M. J. Kelly. « Hot‐electron transport in In0.53Ga0.47As ». Journal of Applied Physics 62, no 5 (septembre 1987) : 1842–49. http://dx.doi.org/10.1063/1.339567.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Shah, Jagdeep, B. Tell, T. J. Bridges, E. G. Burkhardt, A. E. DiGiovanni et K. Brown‐Goebeler. « Luminescence in ion‐implanted In0.53Ga0.47As ». Applied Physics Letters 47, no 2 (15 juillet 1985) : 146–48. http://dx.doi.org/10.1063/1.96243.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Ng, J. S., S. M. Pinches, J. P. R. David, G. Hill et G. J. Rees. « Impact ionisation coefficients of In0.53Ga0.47As ». IEE Proceedings - Optoelectronics 148, no 5 (1 décembre 2001) : 225–28. http://dx.doi.org/10.1049/ip-opt:20010700.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Ng, J. S., J. P. R. David, G. J. Rees et J. Allam. « Avalanche breakdown voltage of In0.53Ga0.47As ». Journal of Applied Physics 91, no 8 (15 avril 2002) : 5200–5202. http://dx.doi.org/10.1063/1.1462845.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Gulwadi, Sadanand M., Mulpuri V. Rao, Alok K. Berry, David S. Simons, Peter H. Chi et Harry B. Dietrich. « Transition metal implants in In0.53Ga0.47As ». Journal of Applied Physics 69, no 8 (15 avril 1991) : 4222–27. http://dx.doi.org/10.1063/1.348393.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Rao, Mulpuri V., N. R. Keshavarz‐Nia, David S. Simons, P. M. Amirtharaj, Phillip E. Thompson, Tao Y. Chang et Jenn Ming Kuo. « Fe implantation in In0.53Ga0.47As/InP ». Journal of Applied Physics 65, no 2 (15 janvier 1989) : 481–85. http://dx.doi.org/10.1063/1.343129.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Kash, Kathleen, et Jagdeep Shah. « Hot electron relaxation in In0.53Ga0.47As ». Journal of Luminescence 30, no 1-4 (février 1985) : 333–39. http://dx.doi.org/10.1016/0022-2313(85)90063-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Ahmed, S. R., B. R. Nag et M. Deb Roy. « Hot-electron transport in In0.53Ga0.47As ». Solid-State Electronics 28, no 12 (décembre 1985) : 1193–97. http://dx.doi.org/10.1016/0038-1101(85)90042-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Beerens, J., C. J. Miner et N. Puetz. « Electron spin resonance in In0.53Ga0.47As ». Semiconductor Science and Technology 10, no 9 (1 septembre 1995) : 1233–36. http://dx.doi.org/10.1088/0268-1242/10/9/005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Urquhart, J., D. J. Robbins, R. I. Taylor et A. J. Moseley. « Impact ionisation coefficients in In0.53Ga0.47As ». Semiconductor Science and Technology 5, no 7 (1 juillet 1990) : 789–91. http://dx.doi.org/10.1088/0268-1242/5/7/026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Seo, K. S., P. R. Berger, G. P. Kothiyal et P. K. Bhattacharya. « Anomalous effects of lamp annealing in modulation-doped In0.53Ga0.47As/In0.52Al0.48As and Si-implanted In0.53Ga0.47As ». IEEE Transactions on Electron Devices 34, no 2 (février 1987) : 235–40. http://dx.doi.org/10.1109/t-ed.1987.22912.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

O'Connor, É., K. Cherkaoui, S. Monaghan, B. Sheehan, I. M. Povey et P. K. Hurley. « Inversion in the In0.53Ga0.47As metal-oxide-semiconductor system : Impact of the In0.53Ga0.47As doping concentration ». Applied Physics Letters 110, no 3 (16 janvier 2017) : 032902. http://dx.doi.org/10.1063/1.4973971.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Chen, D. Y., Y. A. Chang, D. Swenson et F. R. Shepherd. « Thermodynamically stable tungsten ohmic contacts to n-In0.53Ga0.47As ». Journal of Materials Research 13, no 4 (avril 1998) : 959–64. http://dx.doi.org/10.1557/jmr.1998.0134.

Texte intégral
Résumé :
Based on a thermodynamic assessment of the W–In–Ga–As quaternary system, the metal W was selected as a thermodynamically stable ohmic contact material to n-In0.53Ga0.47As. As-deposited contacts (on n ∼ 1.4 × 1018 cm−3 In0.53Ga0.47As) had average specific contact resistances of 7 × 10−7 Ω ·cm2 as measured using the transmission line model. The contact resistances remained unchanged after rapid thermal annealing at 400 °C for 1 min or at 600 °C for 1 min, and exhibited no degradation in electrical properties even after long-term annealing at 500 °C for 100 h. Transmission electron microscopic examination of the contacts showed no interfacial reaction. The present investigation demonstrates the power of thermodynamics in identifying stable ohmic contacts to multicomponent semiconductors.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Ahn, D. H., S. M. Ji, M. Takenaka et S. Takagi. « Design and properties of planar-type tunnel FETs using In0.53Ga0.47As/InxGa1-xAs/In0.53Ga0.47As quantum well ». Journal of Applied Physics 122, no 13 (7 octobre 2017) : 135704. http://dx.doi.org/10.1063/1.4992005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Waldrop, J. R., E. A. Kraut, C. W. Farley et R. W. Grant. « Measurement of InP/In0.53Ga0.47As and In0.53Ga0.47As/In0.52Al0.48As heterojunction band offsets by x‐ray photoemission spectroscopy ». Journal of Applied Physics 69, no 1 (janvier 1991) : 372–78. http://dx.doi.org/10.1063/1.347724.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Pal, S., S. M. Shivaprasad, Y. Aparna et B. R. Chakraborty. « Phosphorous passivation of In0.53Ga0.47As using MOVPE and characterization of Au–Ga2O3(Gd2O3)–In0.53Ga0.47As MIS capacitor ». Applied Surface Science 245, no 1-4 (mai 2005) : 196–201. http://dx.doi.org/10.1016/j.apsusc.2004.10.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Shen, Jian, Evgueni A. Chagarov, Darby L. Feldwinn, Wilhelm Melitz, Nancy M. Santagata, Andrew C. Kummel, Ravi Droopad et Matthias Passlack. « Scanning tunneling microscopy/spectroscopy study of atomic and electronic structures of In2O on InAs and In0.53Ga0.47As(001)-(4×2) surfaces ». Journal of Chemical Physics 133, no 16 (28 octobre 2010) : 164704. http://dx.doi.org/10.1063/1.3497040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie