Articles de revues sur le sujet « Immunolesione »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Immunolesione.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 39 meilleurs articles de revues pour votre recherche sur le sujet « Immunolesione ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Gu, Zezong, Juan Yu, Karin Werrbach‐Perez et J. Regino Perez‐Polo. « Repeated immunolesions display diminished stress response signal ». International Journal of Developmental Neuroscience 18, no 2-3 (9 mars 2000) : 177–83. http://dx.doi.org/10.1016/s0736-5748(99)00086-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gu, Zezong, Juan Yu et J. Regino Perez-Polo. « Responses in the aged rat brain after total immunolesion ». Journal of Neuroscience Research 54, no 1 (1 octobre 1998) : 7–16. http://dx.doi.org/10.1002/(sici)1097-4547(19981001)54:1<7 ::aid-jnr2>3.0.co;2-m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yu, J., R. G. Wiley et R. J. Perez-Polo. « Altered NGF protein levels in different brain areas after immunolesion ». Journal of Neuroscience Research 43, no 2 (15 janvier 1996) : 213–23. http://dx.doi.org/10.1002/(sici)1097-4547(19960115)43:2<213 ::aid-jnr9>3.0.co;2-j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ferreira, G., M. Meurisse, R. Gervais, N. Ravel et F. Lévy. « Extensive immunolesions of basal forebrain cholinergic system impair offspring recognition in sheep ». Neuroscience 106, no 1 (septembre 2001) : 103–16. http://dx.doi.org/10.1016/s0306-4522(01)00265-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

McMahan, Robert W., Thomas J. Sobel et Mark G. Baxter. « Selective immunolesions of hippocampal cholinergic input fail to impair spatial working memory ». Hippocampus 7, no 2 (1997) : 130–36. http://dx.doi.org/10.1002/(sici)1098-1063(1997)7:2<130 ::aid-hipo2>3.0.co;2-r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Guo, Yi, Yuanbin Dai, Junyu Lai et Ying Fan. « Study about correlation of anti-neutrophil cytoplasmic antibodies and anticardiolipin antibodies with thromboangiitis obliterans ». Vascular 21, no 6 (13 mai 2013) : 363–68. http://dx.doi.org/10.1177/1708538113478742.

Texte intégral
Résumé :
Doctors often have difficulties in clinical diagnosis and clinical stage of thromboangiitis obliterans (TAO). Immunolesion was important in the initiation and progression of various kinds of vasculitis diseases, including TAO. Several kinds of immune complexes were developed by immunolesion, including anti-neutrophil cytoplasmic antibodies (ANCA) and anticardiolipin antibodies (ACA). Our aim was to determine if it is an effective way for clinical diagnosis and clinical stage of TAO by detection of the presence of ANCA and ACA in blood serum of patients with TAO and the relationship among the presence of ANCA, ACA and patients with different grades of TAO. Blood samples and clinical characteristics were collected from 38 patients with Rutherford grade I TAO, 30 patients with Rutherford grade II–III TAO, 75 patients with arteriosclerosis obliterans (ASO) and 65 healthy volunteers. Their serum samples were investigated for ANCA by indirect immunofluorescent (IIF), and for ACA and ANCA specificity antigens including reactivity to proteinase 3(PR3), myeloperoxidase (MPO), cathepsin G (CG), bactericidal/permesbility-increasing protein (BPI), elastase (HLE) and lactoferrin (LF) by enzyme linked immunosorbent assay (ELISA). (1) ANCA positive rate and titre were much higher in cases with Rutherford grade I TAO (52.6%, 20/38, 0.386 ± 0.458) and Rutherford grade II–III TAO (73.3%, 22/30, 0.847 ± 0.658) than those in cases with ASO (4%, 3/75, 0.011 ± 0.002) and healthy volunteers (0%,0/65, 0.010 ± 0.002) ( P < 0.01). ANCA positive rate and titre were higher in cases with Rutherford grade II–III TAO (73.3%, 22/30, 0.847 ± 0.658) than those in cases with Rutherford grade I TAO (52.6%, 20/38, 0.386 ± 0.458) ( P < 0.05). (2) ACA concentration was much higher in cases with Rutherford grade I TAO (270.13 ± 13.05 IU/mL) and Rutherford grade II–III TAO (279.33 ± 19.98 IU/mL) than that in cases with ASO (236.85 ± 17.32 IU/mL) and healthy volunteers (229.16 ± 15.55 IU/mL) ( P < 0.05) respectively. (3) In 42 cases of ANCA-positive samples, there were 20 cases reacted with MPO, 14 cases reacted with LF, five cases reacted with HLE, five cases reacted with BPI and no one reacted with PR3 and CG. All cases were Rutherford grade II–III TAO. Our results indicate that ANCA, ANCA specificity antigens and ACA were detected susceptibly and availably in patients with TAO. Thus, detection of ANCA, ANCA specificity antigens and ACA was helpful for clinical diagnosis of TAO and detection of ANCA and ANCA specificity antigens was helpful for clinical staging of TAO. They are important assistance for clinical diagnosis and stage of TAO.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Galani, Rodrigue, Olivia Lehmann, Tristan Bolmont, Elizabeth Aloy, Fabrice Bertrand, Christine Lazarus, Hélène Jeltsch et Jean-Christophe Cassel. « Selective immunolesions of CH4 cholinergic neurons do not disrupt spatial memory in rats ». Physiology & ; Behavior 76, no 1 (mai 2002) : 75–90. http://dx.doi.org/10.1016/s0031-9384(02)00674-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Berger-Sweeney, Joanne, Nancy A. Stearns, Stephanie L. Murg, Laura R. Floerke-Nashner, Douglas A. Lappi et Mark G. Baxter. « Selective Immunolesions of Cholinergic Neurons in Mice : Effects on Neuroanatomy, Neurochemistry, and Behavior ». Journal of Neuroscience 21, no 20 (15 octobre 2001) : 8164–73. http://dx.doi.org/10.1523/jneurosci.21-20-08164.2001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Nilsson, O. G., G. Leanza, C. Rosenblad, D. A. Lappi, R. G. Wiley et A. Björklund. « Spatial learning impairments in rats with selective immunolesion of the forebrain cholinergic system ». NeuroReport 3, no 11 (novembre 1992) : 1005–8. http://dx.doi.org/10.1097/00001756-199211000-00015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Potter, H., E. Alenciks, K. Frazier, A. Porter et G. S. Fraley. « Immunolesion of melanopsin neurons causes gonadal regression in Pekin drakes (Anas platyrhynchos domesticus) ». General and Comparative Endocrinology 256 (janvier 2018) : 16–22. http://dx.doi.org/10.1016/j.ygcen.2017.08.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

W�rtwein, Gitta, Juan Yu, Tracy Toliver-Kinsky et J. R. Perez-Polo. « Responses of young and aged rat CNS to partial cholinergic immunolesions and NGF treatment ». Journal of Neuroscience Research 52, no 3 (1 mai 1998) : 322–33. http://dx.doi.org/10.1002/(sici)1097-4547(19980501)52:3<322 ::aid-jnr8>3.0.co;2-f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Bassant, Marie-hélène, Anne Jouvenceau, Emmanuelle Apartis, Frederique Poindessous-jazat, Patrick Dutar et Jean-marie Billard. « Immunolesion of the cholinergic basal forebrain :effects on functional properties of hippocampal and septalneurons ». International Journal of Developmental Neuroscience 16, no 7-8 (novembre 1998) : 613–32. http://dx.doi.org/10.1016/s0736-5748(98)00073-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Silveira, Diosely C., Gregory L. Holmes, Steven C. Schachter, Changiz Geula et Donald L. Schomer. « Increased susceptibility to generalized seizures after immunolesions of the basal forebrain cholinergic neurons in rats ». Brain Research 878, no 1-2 (septembre 2000) : 223–27. http://dx.doi.org/10.1016/s0006-8993(00)02703-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Roßner, Steffen. « Cholinergic immunolesions by 192IgG‐saporin—a useful tool to simulate pathogenic aspects of alzheimer's disease ». International Journal of Developmental Neuroscience 15, no 7 (novembre 1997) : 835–50. http://dx.doi.org/10.1016/s0736-5748(97)00035-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Gu, Zezong, Juan Yu et J. Regino Perez-Polo. « Long term changes in brain cholinergic markers and nerve growth factor levels after partial immunolesion ». Brain Research 801, no 1-2 (août 1998) : 190–97. http://dx.doi.org/10.1016/s0006-8993(98)00579-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Gil-Bea, Francisco J., Reinhard Schliebs, Ludmil Kirazov, Joaquı́n Del Rio et Marı́a J. Ramı́rez. « P1-078 : Basal forebrain cholinergic immunolesion in Tg2576 mice affects beta-amyloidogenesis and cognitive function ». Alzheimer's & ; Dementia 2 (juillet 2006) : S117—S118. http://dx.doi.org/10.1016/j.jalz.2006.05.453.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Perry, TracyAnn, Helen Hodges et Jeffrey A. Gray. « Behavioural, histological and immunocytochemical consequences following 192 IgG-saporin immunolesions of the basal forebrain cholinergic system ». Brain Research Bulletin 54, no 1 (janvier 2001) : 29–48. http://dx.doi.org/10.1016/s0361-9230(00)00413-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kapás, Levente, Ferenc Obál, Adam A. Book, John B. Schweitzer, Ronald G. Wiley et James M. Krueger. « The effects of immunolesions of nerve growth factor-receptive neurons by 192 IgG-saporin on sleep ». Brain Research 712, no 1 (mars 1996) : 53–59. http://dx.doi.org/10.1016/0006-8993(95)01431-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Ro�ner, S., J. Yu, D. Pizzo, K. Werrbach-Perez, R. Schliebs, V. Bigl et J. R. Perez-Polo. « Effects of intraventricular transplantation of NGF-secreting cells on cholinergic basal forebrain neurons after partial immunolesion ». Journal of Neuroscience Research 45, no 1 (1 juillet 1996) : 40–56. http://dx.doi.org/10.1002/(sici)1097-4547(19960701)45:1<40 ::aid-jnr4>3.0.co;2-h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Torres, E. M., T. A. Perry, A. Blokland, L. S. Wilkinson, R. G. Wiley, D. A. Lappi et S. B. Dunnett. « Behavioural, histochemical and biochemical consequences of selective immunolesions in discrete regions of the basal forebrain cholinergic system ». Neuroscience 63, no 1 (novembre 1994) : 95–122. http://dx.doi.org/10.1016/0306-4522(94)90010-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Bassant, Marie-H., Frédérique Poindessous-Jazat et Bernard H. Schmidt. « Sustained effect of metrifonate on cerebral glucose metabolism after immunolesion of basal forebrain cholinergic neurons in rats ». European Journal of Pharmacology 387, no 2 (janvier 2000) : 151–62. http://dx.doi.org/10.1016/s0014-2999(99)00742-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Gu, Zezong, Tracy Toliver‐Kinsky, Joel Glasgow, Karin Werrbach‐Perez et J. Regino Perez‐Polo. « NGF‐mediated alteration of NF‐ κ B binding activity after partial immunolesions to rat cholinergic basal forebrain neurons ». International Journal of Developmental Neuroscience 18, no 4-5 (15 mai 2000) : 455–68. http://dx.doi.org/10.1016/s0736-5748(00)00004-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Fraley, G. S. « Immunolesion of Hindbrain Catecholaminergic Projections to the Medial Hypothalamus Attenuates Penile Reflexive Erections and Alters Hypothalamic Peptide mRNA ». Journal of Neuroendocrinology 14, no 5 (mai 2002) : 345–48. http://dx.doi.org/10.1046/j.0007-1331.2002.00782.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Sorger, Dietlind, Reinhard Schliebs, Ingrid Kämpfer, Steffen Rossner, Jochen Heinicke, Claudia Dannenberg et Peter Georgi. « In vivo [125I]-iodobenzovesamicol binding reflects cortical cholinergic deficiency induced by specific immunolesion of rat basal forebrain cholinergic system ». Nuclear Medicine and Biology 27, no 1 (janvier 2000) : 23–31. http://dx.doi.org/10.1016/s0969-8051(99)00087-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Calza, L., A. Giuliani, M. Fernandez, S. Pirondi, G. D'Intino, L. Aloe et L. Giardino. « Neural stem cells and cholinergic neurons : Regulation by immunolesion and treatment with mitogens, retinoic acid, and nerve growth factor ». Proceedings of the National Academy of Sciences 100, no 12 (30 mai 2003) : 7325–30. http://dx.doi.org/10.1073/pnas.1132092100.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Bassant, Marie H., Emmanuelle Apartis, Frédérique R. Jazat-Poindessous, Ronald G. Wiley, Yvon A. Lamour et Yvon A. Lamour. « Selective Immunolesion of the Basal Forebrain Cholinergic Neurons : Effects on Hippocampal Activity During Sleep and Wakefulness in the Rat ». Neurodegeneration 4, no 1 (mars 1995) : 61–70. http://dx.doi.org/10.1006/neur.1995.0007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Roßner, S., Reinhard Schliebs, J. R. Perez-Polo, R. G. Wiley et V. Bigl. « Differential changes in cholinergic markers from selected brain regions after specific immunolesion of the rat cholinergic basal forebrain system ». Journal of Neuroscience Research 40, no 1 (1 janvier 1995) : 31–43. http://dx.doi.org/10.1002/jnr.490400105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Burjanadze, M., T. Naneishvili, M. Dashniani, N. Chkhikvishvili et M. Chighladze. « P.1.h.004 Spatial long-term memory and modulation of NMDA receptor subunit expression in medial septal immunolesioned rats ». European Neuropsychopharmacology 24 (octobre 2014) : S272—S273. http://dx.doi.org/10.1016/s0924-977x(14)70428-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Severino, Maurizio, Anja F. Pedersen, Viktorija Trajkovska, Ellen Christensen, Rasmus Lohals, Lone M. Veng, Gitte M. Knudsen et Susana Aznar. « Selective immunolesion of cholinergic neurons leads to long-term changes in 5-HT2A receptor levels in hippocampus and frontal cortex ». Neuroscience Letters 428, no 1 (novembre 2007) : 47–51. http://dx.doi.org/10.1016/j.neulet.2007.09.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Härtig, W., A. Saul, J. Kacza, J. Grosche, S. Goldhammer, D. Michalski et O. Wirths. « Immunolesion-induced loss of cholinergic projection neurones promotes β-amyloidosis and tau hyperphosphorylation in the hippocampus of triple-transgenic mice ». Neuropathology and Applied Neurobiology 40, no 2 (21 janvier 2014) : 106–20. http://dx.doi.org/10.1111/nan.12050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Naneishvili, T., K. Rusadze et R. Sakandelidze. « Chronic memantine treatment prevents short-term memory impairment caused by conjoint immunolesions of GABAergic and cholinergic medial septal neurons in rats ». European Neuropsychopharmacology 26 (octobre 2016) : S274—S275. http://dx.doi.org/10.1016/s0924-977x(16)31161-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Chambon, C., V. Paban, C. Manrique et B. Alescio-Lautier. « Behavioral and immunohistological effects of cholinergic damage in immunolesioned rats : Alteration of c-Fos and polysialylated neural cell adhesion molecule expression ». Neuroscience 147, no 4 (juillet 2007) : 893–905. http://dx.doi.org/10.1016/j.neuroscience.2007.05.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Apelt, J., R. Schliebs, M. Beck, S. Roβner et V. Bigl Paul. « 119 developmental expression of splicing variants of the amyloid precursor protein in rat brain regions and the effect of cholinergic immunolesion ». International Journal of Developmental Neuroscience 14 (juillet 1996) : 79. http://dx.doi.org/10.1016/0736-5748(96)80309-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Roßner, S., J. R. Perez-Polo, R. G. Wiley, R. Schliebs et V. Bigl. « Differential expression of immediate early genes in distinct layers of rat cerebral cortex after selective immunolesion of the forebrain cholinergic system ». Journal of Neuroscience Research 38, no 3 (15 juin 1994) : 282–93. http://dx.doi.org/10.1002/jnr.490380306.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Barefoot, H. C., H. F. Baker et R. M. Ridley. « Synergistic effects of unilateral immunolesions of the cholinergic projections from the basal forebrain and contralateral ablations of the inferotemporal cortex and hippocampus in monkeys ». Neuroscience 98, no 2 (juin 2000) : 243–51. http://dx.doi.org/10.1016/s0306-4522(00)00131-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Szigeti, Csaba, Norbert Bencsik, Aurel Janos Simonka, Adam Legradi, Peter Kasa et Karoly Gulya. « Long-term effects of selective immunolesions of cholinergic neurons of the nucleus basalis magnocellularis on the ascending cholinergic pathways in the rat : A model for Alzheimer's disease ». Brain Research Bulletin 94 (mai 2013) : 9–16. http://dx.doi.org/10.1016/j.brainresbull.2013.01.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Fraley, Gregory S. « Immunolesions of Glucoresponsive Projections to the Arcuate Nucleus Alter Glucoprivic-Induced Alterations in Food Intake, Luteinizing Hormone Secretion, and GALP mRNA, but Not Sex Behavior in Adult Male Rats ». Neuroendocrinology 83, no 2 (2006) : 97–105. http://dx.doi.org/10.1159/000094375.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Fraley, G. S., et S. Ritter. « Immunolesion of Norepinephrine and Epinephrine Afferents to Medial Hypothalamus Alters Basal and 2-Deoxy-d-Glucose-Induced Neuropeptide Y and Agouti Gene-Related Protein Messenger Ribonucleic Acid Expression in the Arcuate Nucleus ». Endocrinology 144, no 1 (1 janvier 2003) : 75–83. http://dx.doi.org/10.1210/en.2002-220659.

Texte intégral
Résumé :
Abstract Neuropeptide Y (NPY) and agouti gene-related protein (AGRP) are orexigenic peptides of special importance for control of food intake. In situ hybridization studies have shown that NPY and AGRP mRNAs are increased in the arcuate nucleus of the hypothalamus (ARC) by glucoprivation. Other work has shown that glucoprivation stimulates food intake by activation of hindbrain glucoreceptor cells and requires the participation of rostrally projecting norepinephrine (NE) or epinephrine (E) neurons. Here we determine the role of hindbrain catecholamine afferents in glucoprivation-induced increase in ARC NPY and AGRP gene expression. The selective NE/E immunotoxin saporin-conjugated antidopamineβ-hydroxylase (anti-dβh) was microinjected into the medial hypothalamus and expression of AGRP and NPY mRNA was analyzed subsequently in the ARC under basal and glucoprivic conditions using 33P-labeled in situ hybridization. Saporin-conjugated anti-dβh virtually eliminated dβh-immunoreactive terminals in the ARC without causing nonspecific damage. These lesions significantly increased basal but eliminated 2-deoxy-d-glucose-induced increases in AGRP and NPY mRNA expression. Results indicate that hindbrain catecholaminergic neurons contribute to basal NPY and AGRP gene expression and mediate the responsiveness of NPY and AGRP neurons to glucose deficit. Our results also suggest that catecholamine neurons couple potent orexigenic neural circuitry within the hypothalamus with hindbrain glucose sensors that monitor brain glucose supply.
Styles APA, Harvard, Vancouver, ISO, etc.
39

DASHNIANI, M. G., M. A. BURJANADZE, T. L. NANEISHVILI, N. C. CHKHIKVISHVILI, G. V. BESELIA, L. B. KRUASHVILI, N. O. POCHKHIDZE et M. R. CHIGHLADZE. « Exploratory Behavior and Recognition Memory in Medial Septal Electrolytic, Neuro- and Immunotoxic Lesioned Rats ». Physiological Research, 16 octobre 2015, 755–67. http://dx.doi.org/10.33549/physiolres.932809.

Texte intégral
Résumé :
In the present study, the effect of the medial septal (MS) lesions on exploratory activity in the open field and the spatial and object recognition memory has been investigated. This experiment compares three types of MS lesions: electrolytic lesions that destroy cells and fibers of passage, neurotoxic – ibotenic acid lesions that spare fibers of passage but predominantly affect the septal noncholinergic neurons, and immunotoxin – 192 IgG-saporin infusions that only eliminate cholinergic neurons. The main results are: the MS electrolytic lesioned rats were impaired in habituating to the environment in the repeated spatial environment, but rats with immuno- or neurotoxic lesions of the MS did not differ from control ones; the MS electrolytic and ibotenic acid lesioned rats showed an increase in their exploratory activity to the objects and were impaired in habituating to the objects in the repeated spatial environment; rats with immunolesions of the MS did not differ from control rats; electrolytic lesions of the MS disrupt spatial recognition memory; rats with immuno- or neurotoxic lesions of the MS were normal in detecting spatial novelty; all of the MS-lesioned and control rats clearly reacted to the object novelty by exploring the new object more than familiar ones. Results observed across lesion techniques indicate that: (i) the deficits after nonselective damage of MS are limited to a subset of cognitive processes dependent on the hippocampus, (ii) MS is substantial for spatial, but not for object recognition memory – the object recognition memory can be supported outside the septohippocampal system; (iii) the selective loss of septohippocampal cholinergic or noncholinergic projections does not disrupt the function of the hippocampus to a sufficient extent to impair spatial recognition memory; (iv) there is dissociation between the two major components (cholinergic and noncholinergic) of the septohippocampal pathway in exploratory behavior assessed in the open field – the memory exhibited by decrements in exploration of repeated object presentations is affected by either electrolytic or ibotenic lesions, but not saporin.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie