Littérature scientifique sur le sujet « Immiscible two-Phase flow »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Immiscible two-Phase flow ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Immiscible two-Phase flow"
Deng, Yongbo, Zhenyu Liu et Yihui Wu. « Topology Optimization of Capillary, Two-Phase Flow Problems ». Communications in Computational Physics 22, no 5 (31 octobre 2017) : 1413–38. http://dx.doi.org/10.4208/cicp.oa-2017-0003.
Texte intégralSun, Wen Tao, et Huai Yu Zhang. « Finite element method for two-phase immiscible flow ». Numerical Methods for Partial Differential Equations 15, no 4 (juillet 1999) : 407–16. http://dx.doi.org/10.1002/(sici)1098-2426(199907)15:4<407 ::aid-num1>3.0.co;2-w.
Texte intégralMitrović, Darko, et Andrej Novak. « Two-Phase Nonturbulent Flow with Applications ». Mathematical Problems in Engineering 2015 (2015) : 1–8. http://dx.doi.org/10.1155/2015/439704.
Texte intégralShao, Sihong, et Tiezheng Qian. « A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces ». Communications in Computational Physics 11, no 3 (mars 2012) : 831–62. http://dx.doi.org/10.4208/cicp.071210.040511a.
Texte intégralLanglo, Peder, et Magne S. Espedal. « Macrodispersion for two-phase, immiscible flow in porous media ». Advances in Water Resources 17, no 5 (janvier 1994) : 297–316. http://dx.doi.org/10.1016/0309-1708(94)90033-7.
Texte intégralChen, Zhangxin. « Numerical Analysis for Two-phase Flow in Porous Media ». Computational Methods in Applied Mathematics 3, no 1 (2003) : 59–75. http://dx.doi.org/10.2478/cmam-2003-0006.
Texte intégralYEH, LI-MING. « ON TWO-PHASE FLOW IN FRACTURED MEDIA ». Mathematical Models and Methods in Applied Sciences 12, no 08 (août 2002) : 1075–107. http://dx.doi.org/10.1142/s0218202502002045.
Texte intégralXu, Peng, Ming-Zhou Yu, Shu-Xia Qiu et Bo-Ming Yu. « Monte Carlo simulation of a two-phase flow in an unsaturated porous media ». Thermal Science 16, no 5 (2012) : 1382–85. http://dx.doi.org/10.2298/tsci1205382x.
Texte intégralHOWISON, SAM D. « A note on the two-phase Hele-Shaw problem ». Journal of Fluid Mechanics 409 (25 avril 2000) : 243–49. http://dx.doi.org/10.1017/s0022112099007740.
Texte intégralKačur, Jozef, Benny Malengier et Pavol Kišon. « Numerical Modeling of Two Phase Flow under Centrifugation ». Defect and Diffusion Forum 326-328 (avril 2012) : 221–26. http://dx.doi.org/10.4028/www.scientific.net/ddf.326-328.221.
Texte intégralThèses sur le sujet "Immiscible two-Phase flow"
Pan, Xuefeng. « Immiscible two-phase flow in a fracture ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0025/NQ47907.pdf.
Texte intégralRannou, Guillaume. « Lattice-Boltzmann method and immiscible two-phase flow ». Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26560.
Texte intégralCommittee Chair: Cyrus K. Aidun; Committee Member: Marc K. Smith; Committee Member: S. Mostafa Ghiaasiaan. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Bristow, Robert Philip. « Micromodels of immiscible two-phase flow in porous media ». Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235763.
Texte intégralNourdeen, Hasan. « Upscaling immiscible capillary-controlled two-phase flow in porous media ». Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/61482.
Texte intégralSchmid, Karen Sophie. « Mathematical analysis, scaling and simulation of flow and transport during immiscible two-phase flow ». Thesis, Heriot-Watt University, 2012. http://hdl.handle.net/10399/2547.
Texte intégralPIMENTEL, ISMAEL ANDRADE. « AN ADAPTIVE MESHFREE ADVECTION METHOD FOR TWO-PHASE FLOW PROBLEMS OF INCOMPRESSIBLE AND IMMISCIBLE FLUIDS THROUGH THREEDIMENSIONAL HETEROGENEOUS POROUS MEDIA ». PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33594@1.
Texte intégralCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Esta tese propõe um método meshfree adaptativo de advecção para problemas de fluxo bifásico de fluidos incompressíveis e imiscíveis em meios porosos heterogêneos tridimensionais. Este método se baseia principalmente na combinação do método Semi-Lagrangeano adaptativo com interpolação local meshfree usando splines poliharmônicas como funções de base radial. O método proposto é uma melhoria e uma extensão do método adaptativo meshfree AMMoC proposto por Iske e Kaser (2005) para modelagem 2D de reservatórios de petróleo. Inicialmente este trabalho propõe um modelo em duas dimensões, contribuindo com uma melhoria significativa no cálculo do Laplaciano, utilizando os métodos meshfree de Hermite e Kansa. Depois, o método é ampliado para três dimensões (3D) e para um meio poroso heterogêneo. O método proposto é testado com o problema de five spot e os resultados são comparados com os obtidos por sistemas bem conhecidos na indústria de petróleo.
This thesis proposes an adaptive meshfree advection method for two-phase flow problems of incompressible and immiscible fluids through three-dimensional heterogeneous porous media. This method is based mainly on a combination of adaptive semi-Lagrangian method with local meshfree interpolation using polyharmonic splines as radial basis functions. The proposed method is an improvement and extension of the adaptive meshfree advection scheme AMMoC proposed by Iske and Kaser (2005) for 2D oil reservoir modeling. Initially this work proposes a model in two dimensions, contributing to a significant improvement in the calculation of the Laplacian, using the meshfree methods of Hermite and Kansa. Then, the method is extended to three dimensions (3D) and a heterogeneous porous medium. The proposed method is tested with the five spot problem and the results are compared with those obtained by well-known systems in the oil industry.
Quenjel, El Houssaine. « Volumes finis/Eléments finis pour des écoulements diphasiques compressibles en milieux poreux hétérogènes et anisotropes ». Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0059/document.
Texte intégralThe objective of this thesis is the development and the analysis of robust and consistent numerical schemes for the approximation of compressible two-phase flow models in anisotropic and heterogeneous porous media. A particular emphasis is set on the anisotropy together with the geometric complexity of the medium. The mathematical problem is given in a system of two degenerate and coupled parabolic equations whose main variables are the nonwetting saturation and the global pressure. In view of the difficulties manifested in the considered system, its cornerstone equations are approximated with two different classes of the finite volume family. The first class consists of combining finite elements and finite volumes. Based on standard assumptions on the space discretization and on the permeability tensor, a rigorous convergence analysis of the scheme is carried out thanks to classical arguments. To dispense with the underlined assumptions on the anisotropy ratio and on the mesh, the model has to be first formulated in the factional flux formulation. Moreover, the diffusive term is discretized by a Godunov-like scheme while the convective fluxes are approximated using an upwind technique. The resulting scheme preserves the physical ranges of the computed solution and satisfies the coercivity property. Hence, the convergence investigation holds. Numerical results show a satisfactory qualitative behavior of the scheme even if the medium of interest is anisotropic. The second class allows to consider more general meshes and tensors. It is about a new positive nonlinear discrete duality finite volume method. The main point is to approximate a part of the fluxes using a non standard technique. The application of this ideato a nonlinear diffusion equation yields surprising results. Indeed,not only is the discrete maximum property fulfilled but also the convergence of the scheme is established. Practically, the proposed method shows great promises since it provides a positivity-preserving and convergent scheme with optimal convergence rates
Zhang, Duo. « Lattice Boltzmann modelling of immiscible two-phase flows ». Thesis, University of Liverpool, 2015. http://livrepository.liverpool.ac.uk/2038199/.
Texte intégralStrinopoulos, Theofilos Hou Thomas Y. « Upscaling immiscible two-phase flows in an adaptive frame / ». Diss., Pasadena, Calif. : California Institute of Technology, 2006. http://resolver.caltech.edu/CaltechETD:etd-02192006-165348.
Texte intégralPi, Haohong. « Analyse expérimentale-numérique de l'écoulement diphasique dans des modèles de milieu poreux sur puce microfluidique ». Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0126.
Texte intégralThe core-flood experiments are the usual method used to study the immiscible biphasic flow. However, beside reproducibility aspects, a significant drawback is that with these black box experiments, we cannot observe and capture key phenomena at the pore scale, including interfacial interactions and details about mobilization of the trapped oil (e.g. size and distribution of residual ganglia). This is why microfluidic micromodel devices are now extensively used in lab EOR experiments. They preserve the structural details of the rock while offering advantages such as easy cleaning and repeatability. Visual tracking of fluids displacement is particularly important as it can provide more details about the behavior of wetting and non-wetting phases in porous media, aiding in targeted strategies to enhance oil recovery rates. This thesis explores the intricate dynamics of immiscible two-phase flows combines microfluidic porous medium models, often referred to as “reservoir-on-a-chip”, with numerical simulations.In our experiments, we used morphological to monitor and record displacement behavior in biphasic flow, systematically studying the effects of different capillary numbers (Ca) and viscosity ratios (M) on the flow mechanisms and the mobilization of residual oil. The results indicated that during waterflooding, displacement exhibited characteristics of viscous fingering at lower Ca and M values. By increasing the flow rate to enhance Ca tenfold, the residual oil showing lateral and even backward invasion of flow paths without significant changes in cluster size. With increasing M, both the cluster size and the maximum cluster size decreased, leading to a more uniform distribution of residual oil and lower Sor. The mobilization mechanism of residual oil manifested as ganglia breakup, with newly formed smaller ganglia being mobilized under higher pressures. The distribution of residual oil clusters is consistent with percolation theory, where the scaling exponent τ is 2.0. All experimental results for Sor and corresponding Ca values collapsed onto the classical Capillary Desaturation Curve (CDC).The experimental findings served as a foundation for developing a numerical model using a phase-field approach. This model, based on the Cahn-Hilliard-Navier-Stokes system of equations, effectively captures the bi-phasic flow behavior of immiscible fluids within confined domains. It incorporates conservation of mass and momentum equations, enhanced by phase separation dynamics and interfacial energy considerations. The numerical simulations, executed on the open-source finite element platform Fenics, align qualitatively and quantitatively with experimental observations, affirming the accuracy of model in predicting fluid behaviors under varied physical conditions, advancing our understanding of pore-scale fluid dynamics. Simulations focus on dissecting the influence of fluid properties and operational conditions on the displacement mechanisms at the pore scale
Livres sur le sujet "Immiscible two-Phase flow"
Corey, A. T. Mechanics of immiscible fluids in porous media. 2e éd. Littleton, Colo., U.S.A : Water Resources Publications, 1986.
Trouver le texte intégralCorey, A. T. Mechanics of immiscible fluids in porous media. 3e éd. Highlands Ranch, Colo : Water Resources Publications, 1994.
Trouver le texte intégralCorey, T. Arthur. Mechanics of Immiscible Fluids in Porous Media. 2e éd. Water Resources Pubns, 1986.
Trouver le texte intégralWeyer. Subsurface Contamination by Immiscible F. Taylor & Francis, 1993.
Trouver le texte intégralChapitres de livres sur le sujet "Immiscible two-Phase flow"
Tutkun, O. « Condensate Flow Pattern of Immiscible Liquid Mixtures ». Dans Two-Phase Flow Heat Exchangers, 325–41. Dordrecht : Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2790-2_9.
Texte intégralWang, Yuhang, et Saman A. Aryana. « Nonequilibrium Effects in Immiscible Two-Phase Flow ». Dans Advances in Petroleum Engineering and Petroleum Geochemistry, 81–84. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01578-7_20.
Texte intégralArbogast, Todd, Jim Douglas et Juan E. Santos. « Two-Phase Immiscible Flow in Naturally Fractured Reservoirs ». Dans Numerical Simulation in Oil Recovery, 47–66. New York, NY : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-6352-1_3.
Texte intégralVenkateshwarlu, Akepogu, et Ram Prakash Bharti. « Hydrodynamics of Two-Phase Immiscible Flow in T-Junction Microchannel ». Dans Fluid Mechanics and Fluid Power, Volume 5, 267–75. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-6074-3_25.
Texte intégralKumar, Rohit, Chandan Nashine, Arman Mohaddin Nadaf, Harish Kumar Tomar et Manmohan Pandey. « Experimental Investigation of Two-Phase Immiscible Liquid Flow Through a Microchannel ». Dans Fluid Mechanics and Fluid Power, Volume 4, 553–62. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7177-0_46.
Texte intégralGuo, Feng, et Saman A. Aryana. « A Microfluidic Study of Immiscible Drainage Two-Phase Flow Regimes in Porous Media ». Dans Advances in Petroleum Engineering and Petroleum Geochemistry, 73–75. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01578-7_18.
Texte intégralCancès, Clément, et Flore Nabet. « Finite Volume Approximation of a Degenerate Immiscible Two-Phase Flow Model of Cahn–Hilliard Type ». Dans Springer Proceedings in Mathematics & ; Statistics, 431–38. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57397-7_36.
Texte intégralBarros, W. Q., A. P. Pires et Á. M. M. Peres. « Approximate Solution for One-Dimensional Compressible Two-Phase Immiscible Flow in Porous Media for Variable Boundary Conditions ». Dans Integral Methods in Science and Engineering, 1–17. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07171-3_1.
Texte intégralJoseph, D. D., P. Singh et K. Chen. « Couette Flows, Rollers, Emulsions, Tall Taylor Cells, Phase Separation and Inversion, and a Chaotic Bubble in Taylor-Couette Flow of Two Immiscible Liquids ». Dans NATO ASI Series, 169–89. Boston, MA : Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5793-3_17.
Texte intégralZhang, X. H., Q. J. et X. B. « Comparisons of Static, Quasi-Static and Dynamic 3D Porous Media Scale Network Models for Two-Phase Immiscible Flow in Porous Media ». Dans New Trends in Fluid Mechanics Research, 530–33. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75995-9_175.
Texte intégralActes de conférences sur le sujet "Immiscible two-Phase flow"
Lunda, Filip, Simona Fialová et Marcela Pírková. « Measurement of two-phase immiscible flow ». Dans THE PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON MARITIME EDUCATION AND TRAINING (The 5th ICMET) 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0121200.
Texte intégralIvanov, Denis Alexandrovich, et Mariela G. Araujo Fresky. « Dynamics of Two-Phase Immiscible Pulsed Flow ». Dans SPE/DOE Symposium on Improved Oil Recovery. Society of Petroleum Engineers, 2006. http://dx.doi.org/10.2118/99678-ms.
Texte intégralMewes, Dieter, Martin Nadler et Alexander Tokarz. « THE EFFECT OF EMULSIFICATION ON THE FLOW BEHAVIOUR OF TWO IMMISCIBLE LIQUIDS IN HORIZONTAL PIPES ». Dans International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut : Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.100.
Texte intégralHANYGA, A. « DYNAMICS OF IMMISCIBLE TWO-PHASE FLUID RESERVOIR FLOW ». Dans Theoretical and Computational Acoustics 2003 - The Sixth International Conference (ICTCA). WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702609_0014.
Texte intégralBakhtiyarov, Sayavur I., et Dennis A. Siginer. « A NOTE ON THE LAMINAR CORE-ANNULAR FLOW OF TWO IMMISCIBLE FLUIDS IN A HORIZONTAL TUBE ». Dans International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut : Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.110.
Texte intégralTanaka, M., Yoshimichi Hagiwara, T. None, M. Nakamura et H. Hana. « AN EXPERIMENTAL STUDY ON THE INTERACTION BETWEEN AN IMMISCIBLE DROPLET AND A LIQUID TAYLOR-VORTEX FLOW ». Dans International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut : Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.130.
Texte intégralTadrist, Lounes, et St Radev. « ANALYSIS OF NONPARALLEL FLOW EFFECTS ON THE INSTABILITY OF A CAPILLARY JET IN ANOTHER IMMISCIBLE FLUID ». Dans International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut : Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.450.
Texte intégralLunda, F., S. Fialová et M. Pírková. « Computational simulation of two-phase immiscible flow in horizontal pipeline ». Dans Engineering Mechanics 2022. Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Prague, 2022. http://dx.doi.org/10.21495/51-2-241.
Texte intégralZhang, Weifeng, et Xiaohong Wang. « Optimal Ordering for Transport Equations in Immiscible Two-Phase Countercurrent Flow ». Dans 2023 IEEE International Conference on Electrical, Automation and Computer Engineering (ICEACE). IEEE, 2023. http://dx.doi.org/10.1109/iceace60673.2023.10442464.
Texte intégralArtus, V., et B. Noetinger. « Macrodispersion Approach for Upscaling of Two-Phase, Immiscible Flow in Heterogeneous Porous Media ». Dans ECMOR VIII - 8th European Conference on the Mathematics of Oil Recovery. European Association of Geoscientists & Engineers, 2002. http://dx.doi.org/10.3997/2214-4609.201405942.
Texte intégral