Sommaire
Littérature scientifique sur le sujet « Imidazolium immobilization »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Imidazolium immobilization ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Imidazolium immobilization"
Finn, M., N. An et A. Voutchkova-Kostal. « Immobilization of imidazolium ionic liquids on hydrotalcites using silane linkers : retardation of memory effect ». RSC Advances 5, no 17 (2015) : 13016–20. http://dx.doi.org/10.1039/c4ra13839b.
Texte intégralBahadorikhalili, Saeed, Leila Ma’mani, Hossein Mahdavi et Abbas Shafiee. « Palladium catalyst supported on PEGylated imidazolium based phosphinite ionic liquid-modified magnetic silica core–shell nanoparticles : a worthy and highly water-dispersible catalyst for organic reactions in water ». RSC Advances 5, no 87 (2015) : 71297–305. http://dx.doi.org/10.1039/c5ra12747e.
Texte intégralTripathi, Alok Kumar, Yogendra Lal Verma et Rajendra Kumar Singh. « Thermal, electrical and structural studies on ionic liquid confined in ordered mesoporous MCM-41 ». Journal of Materials Chemistry A 3, no 47 (2015) : 23809–20. http://dx.doi.org/10.1039/c5ta05090a.
Texte intégralSharma, Anshu, Kamla Rawat, Pratima R. Solanki et H. B. Bohidar. « Electrochemical response of agar ionogels towards glucose detection ». Analytical Methods 7, no 14 (2015) : 5876–85. http://dx.doi.org/10.1039/c5ay01310k.
Texte intégralMahmoudi, Hamed, Federica Valentini, Francesco Ferlin, Lucia Anna Bivona, Ioannis Anastasiou, Luca Fusaro, Carmela Aprile, Assunta Marrocchi et Luigi Vaccaro. « A tailored polymeric cationic tag–anionic Pd(ii) complex as a catalyst for the low-leaching Heck–Mizoroki coupling in flow and in biomass-derived GVL ». Green Chemistry 21, no 2 (2019) : 355–60. http://dx.doi.org/10.1039/c8gc03228a.
Texte intégralYuan, Ya Mei, Qiu Jin Li, Song Kun Yao, Ji Xian Gong et Jian Fei Zhang. « Different Patterns of Ionic Liquids-Regenerated Cellulose Carriers for Papain Immobilization ». Advanced Materials Research 864-867 (décembre 2013) : 319–23. http://dx.doi.org/10.4028/www.scientific.net/amr.864-867.319.
Texte intégralTakahashi, Nobuyuki, Hideo Hata et Kazuyuki Kuroda. « Exfoliation of Layered Silicates through Immobilization of Imidazolium Groups ». Chemistry of Materials 23, no 2 (25 janvier 2011) : 266–73. http://dx.doi.org/10.1021/cm102942s.
Texte intégralPassos, Marieta L. C., Emília Sousa et M. Lúcia M. F. S. Saraiva. « Immobilized imidazolium-based ionic liquids in C18 for solid-phase extraction ». Analyst 145, no 7 (2020) : 2701–8. http://dx.doi.org/10.1039/c9an02479d.
Texte intégralZhao, Cuifang, Baozeng Ren, Yuting Song, Junling Zhang, Lingchao Wei, Shimou Chen et Suojiang Zhang. « Immobilization and molecular rearrangement of ionic liquids on the surface of carbon nanotubes ». RSC Adv. 4, no 31 (2014) : 16267–73. http://dx.doi.org/10.1039/c4ra00569d.
Texte intégralYuan, Ya Mei, Qiu Jin Li, Song Kun Yao, Wei Zhang et Jian Fei Zhang. « Immobilization of Papain on Regenerated Cellulose from Ionic Liquids ». Applied Mechanics and Materials 448-453 (octobre 2013) : 1651–55. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.1651.
Texte intégralThèses sur le sujet "Imidazolium immobilization"
Adjez, Yanis. « Stimulation of Electrocatalytic Reduction of Nitrate by Immobilized Ionic Liquids ». Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS337.pdf.
Texte intégralNitrate pollution in water represents a significant environmental challenge and is one of the top ten most common water quality violations worldwide. This challenge offers an opportunity for the circular economy as nitrate electrolysis has been suggested as a sustainable method for valorization of nitrate-contaminated effluents by simultaneous decentralized ammonia production (a commodity chemical). In particular, the electrochemical reduction of nitrate (ERN) is a promising and sustainable strategy for addressing the critical issue of nitrate pollution in water sources. Several earth abundant materials such as copper and tin have been suggested as suitable electrocatalytic materials for ERN. Mostly fundamental electrochemical studies under potentiostatic conditions are reported so far. In contrast, this study presents ERN evaluation under galvanostatic conditions for achieving more representative operational conditions for larger engineered systems. However, this provokes the appearance of the concomitant hydrogen evolution reaction (HER), which takes place at a similar thermodynamic potential than ERN. Thus, faradaic efficiency for ERN significantly diminishes under realistic galvanostatic conditions due to the competition with HER. This project addresses this fundamental challenge in electrocatalysis and proposes a novel strategy based on the immobilization of imidazolium-based ionic molecules on the surface of the cathode to selectively inhibit HER and enhance ERN. Notably, this research explores a range of hybrid cathode materials, including 2D plate and 3D foam carbon- and metal-based electrodes, which are recognized for their potential in real world applications for ERN. The success of the ionic organic layer immobilization onto the cathodes was confirmed through different physicochemical characterization techniques and subsequent electrocatalytic activity and selectivity evaluation, which demonstrated an enhanced selectivity and faradaic efficiency for ammonia production on hybrid cathodes twice as much as the bare electrode material for ERN under the same experimental conditions