Sommaire
Littérature scientifique sur le sujet « Imidazoline-2 receptors »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Imidazoline-2 receptors ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Imidazoline-2 receptors"
Golubenkova, Alexandra S., Nikita E. Golantsov, Alexey A. Festa et Leonid G. Voskressensky. « 1-Benzyl-2-(thien-2-yl)-4,5-dihydro-1H-imidazole ». Molbank 2020, no 2 (18 mai 2020) : M1137. http://dx.doi.org/10.3390/m1137.
Texte intégralLi, Jun-Xu. « Imidazoline I 2 receptors : An update ». Pharmacology & ; Therapeutics 178 (octobre 2017) : 48–56. http://dx.doi.org/10.1016/j.pharmthera.2017.03.009.
Texte intégralBagán, Andrea, Sònia Abás, Sergio Rodríguez-Arévalo, Gemma Rodríguez-Arévalo, Fotini Vasilopoulou, Christian Griñán-Ferré, Mercè Pallàs et al. « (2-Imidazolin-4-yl)phosphonates : Green Chemistry and Biology Walk Together ». Proceedings 22, no 1 (10 septembre 2019) : 97. http://dx.doi.org/10.3390/proceedings2019022097.
Texte intégralTakamatsu, Isao, Ayano Iwase, Makoto Ozaki, Tomiei Kazama, Keiji Wada et Masayuki Sekiguchi. « Dexmedetomidine Reduces Long-term Potentiation in Mouse Hippocampus ». Anesthesiology 108, no 1 (1 janvier 2008) : 94–102. http://dx.doi.org/10.1097/01.anes.0000296076.04510.e1.
Texte intégralSoldatov, Vladislav O., Elena A. Shmykova, Marina A. Pershina, Andrey O. Ksenofontov, Yaroslav M. Zamitsky, Alexandr L. Kulikov, Anna A. Peresypkina, Anton P. Dovgan et Yuliya V. Belousova. « Imidazoline receptors agonists : possible mechanisms of endothelioprotection ». Research Results in Pharmacology 4, no 2 (19 juillet 2018) : 11–19. http://dx.doi.org/10.3897/rrpharmacology.4.27221.
Texte intégralBOUSQUET, P. « Central I1- imidazoline receptors and blood pressure : a crosstalk with ?2-adrenergic receptors ». American Journal of Hypertension 17, no 5 (mai 2004) : S13. http://dx.doi.org/10.1016/j.amjhyper.2004.03.026.
Texte intégralLione, Lisa A., David J. Nutt et Alan L. Hudson. « Characterisation and localisation of []2-(2-benzofuranyl)-2-imidazoline binding in rat brain : a selective ligand for imidazoline I2 receptors ». European Journal of Pharmacology 353, no 1 (juillet 1998) : 123–35. http://dx.doi.org/10.1016/s0014-2999(98)00389-6.
Texte intégralCallado, Luis F., Ana I. Maeztu, Javier Ballesteros, Miguel Gutiérrez et J. Javier Meana. « Differential [3H]idazoxan and [3H]2-(2-benzofuranyl)-2-imidazoline (2-BFI) binding to imidazoline I2 receptors in human postmortem frontal cortex ». European Journal of Pharmacology 423, no 2-3 (juillet 2001) : 109–14. http://dx.doi.org/10.1016/s0014-2999(01)01097-4.
Texte intégralLione, Lisa A., David J. Nutt et Alan L. Hudson. « [3H]2-(2-Benzofuranyl)-2-imidazoline : a new selective high affinity radioligand for the study of rabbit brain imidazoline I2 receptors ». European Journal of Pharmacology 304, no 1-3 (mai 1996) : 221–29. http://dx.doi.org/10.1016/0014-2999(96)00131-8.
Texte intégralBousquet, P., G. Bricca, M. Dontenwill, J. Feldman, H. Greney, A. Belcourt, J. Stutzmann et E. Tibiriça. « L 2 - FROM THE α2-ADRENOCEPTORS TO THE IMIDAZOLINE PREFERRING RECEPTORS ». Fundamental & ; Clinical Pharmacology 6, S1 (décembre 1992) : 15s—21s. http://dx.doi.org/10.1111/j.1472-8206.1992.tb00137.x.
Texte intégralThèses sur le sujet "Imidazoline-2 receptors"
CARDINALETTI, CLAUDIA. « Rational design and synthesis of new ligands directed to α2-Adrenergic receptors(α2-ARs) and I2-Imidazoline binding sites (IBS) ». Doctoral thesis, Università degli Studi di Camerino, 2007. http://hdl.handle.net/11581/401882.
Texte intégralHarrigan, Tom. « The effects of central I¦1-imidazoline and æ2-adrenergic receptors on body temperature regulation in conscious rats ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ53047.pdf.
Texte intégralMEREGALLI, CRISTINA. « Caratterizzazione dell'effetto analgesico di un nuovo ligando del recettore I2 imidazolinico in un modello animale di dolore neuropatico indotto da bortezomib ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/27142.
Texte intégralSlavica, Meri. « Part 1 : Design, synthesis and biological activities of 2-(4'-isothiocyanatobenzyl)imidazoline analogues in rat and bovine tissues ; Part 2 : Design and synthesis of selective 2-amino-3-(3'-hydroxy-5'-methylisoxazol-4'-yl)propanoic acid (AMPA) receptor... / ». The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487854314872018.
Texte intégralHarrigan, Tom. « The effects of central I|1-imidazoline and A|2-adrenergic receptors on body temperature regulation in conscious rats ». 2000. http://hdl.handle.net/1993/1852.
Texte intégralDehle, Francis Christian. « Imidazoline receptor antisera-selected protein : a unique modulator of neuronal differentiation ». 2008. http://hdl.handle.net/2440/54151.
Texte intégralhttp://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1345359
Thesis (Ph.D.) - University of Adelaide, School of Medical Sciences, 2008
Proulx, Caroline. « Méthodologie pour la synthèse combinatoire d’azapeptides : application à la synthèse d’analogues aza-GHRP-6 en tant que ligands du récepteur CD36 ». Thèse, 2012. http://hdl.handle.net/1866/8887.
Texte intégralAzapeptides are peptide mimics in which the CH alpha in one or more amino acids has been replaced with a nitirogen atom. Such a modification tends to induce beta turn conformations in peptides, because of the consequences of lone–pair lone–pair repulsion between the two adjacent nitrogens and the planar geometry of the urea in the semicarbazide moiety. Furthermore, the semicarbazide increases protease resistance and is chemically more stable than its amide counterpart. Despite the potential advantages of using azapeptides mimics, their synthesis has been hampered by the solution-phase construction of substituted hydrazines prior to their incorporation into peptide sequences. Growth Hormone Releasing Peptide 6 sequence (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) is a synthetic hexapeptide that binds to two distinct receptor: the Growth Hormone Secretatgogue Receptor 1a (GHS-R1a) and the Cluster of Differentiation 36 (CD36) receptor. The body of my Ph.D thesis has been generally targeted towards two objectives: (a) the development of azapeptide analogs of GHRP-6 with enhanced receptor selectivity and (b) the elaboration of a new synthetic approach for combinatorial submonomer azapeptide synthesis. In response to the first objective, 49 aza-GHRP-6 derivatives were synthesized and evaluated for receptor binding and biological activity. From this library, certain candidates were identified which exhibited decreased affinity for the GHS-R1a receptor with maintained affinity for the CD36 receptor. Furthermore, in studying their anti-angiogenic properties, our collaborators have identified aza-GHRP-6 analogs, which caused a marked decrease in microvascular sprouting in choroid explants, as well as another displaying potential to increase angiogenesis. A new approach for the combinatorial synthesis of azapeptides was developed to better conduct SAR studies using azapeptides. This method features the chemoselective alkylation and deprotection of a resin-bound semicarbazone building block. The scope of the methodology was further expanded by the development of reaction conditions for the chemoselective N-arylation of this semicarbazone residue, yielding 13 aza-GHRP-6 derivatives with aza-arylglycines residues at the D-Trp2 and Trp4 positions. The elaboration of a methodology based on the chemoselective alkylation and deprotection of a semicarbazone has allowed for greater aza-amino acid side chain diversity, enabling for example, the efficient incorporation of aza-propargylglycine residues into peptide sequences. Considering the reactivity of alkynes, we developed reaction conditions for in situ formation of aromatic azides, followed by a 1,3-dipolar cycloaddition reaction on solid support to yield aza-1-aryl,2,3-triazole-3-alanine residues as tryptophan mimics. Seven aza-GHRP-6 analogs were synthesized and subsequently tested for binding to the CD36 receptor by our collaborators. Moreover, the coupling reaction between an aza-propargylglycine-containing dipeptide building block, paraformaldehyde and a variety of secondary amines (A3 coupling) was accomplished in solution to provide access to rigid aza-lysine mimics. These aza-dipeptides were subsequently incorporated at the Trp4 position of seven new aza-GHRP-6 analogues using a solid-phase protocol, and the resulting azaLys mimics were tested for binding towards the CD36 receptor. Finally, conditions for a 5-exo-dig cyclization of an aza-propargylglycine residue were developed to give N-amino imidazolin-2-ones as turn-inducing peptide mimics. Their modification at the 4 position was achieved using a Sonogashira coupling protocol prior to the cyclization step. The conformational properties of these new heterocyclic motifs were assessed by X-ray crystallography and NMR spectroscopy on a tetrapeptide model system. The incorporation of N-amino-4-methyl- and 4-benzyl-imidazolin-2-ones at the Trp4 position of GHRP-6 was further accomplished and the biological evaluation of the peptidomimetics was examined. Taken together, these results should lead to a better understanding of the structural and conformational factors responsible for binding and biological activity of azapeptide ligands of the CD36 receptor. Furthermore, the submonomer approach for azapeptide synthesis developed should promote the use of azapeptides as peptide mimics, given its accessibility and the increased aza-amino acid side-chain diversity available.
Chapitres de livres sur le sujet "Imidazoline-2 receptors"
Tomassoni, Anthony J. « Alpha-2 Adrenergic and Imidazoline Receptor Agonists : Clonidine, Dexmedetomidine, and Related Antihypertensives, Decongestants, and Sedatives ». Dans Critical Care Toxicology, 1–19. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20790-2_27-1.
Texte intégralTomassoni, Anthony J. « Alpha-2 Adrenergic and Imidazoline Receptor Agonists : Clonidine, Dexmedetomidine, and Related Antihypertensives, Decongestants, and Sedatives ». Dans Critical Care Toxicology, 751–69. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-17900-1_27.
Texte intégralFinn, David. « I-2 Imidazoline Receptor ». Dans xPharm : The Comprehensive Pharmacology Reference, 1–7. Elsevier, 2007. http://dx.doi.org/10.1016/b978-008055232-3.60378-2.
Texte intégral