Articles de revues sur le sujet « Imaging systems in medicine »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Imaging systems in medicine.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Imaging systems in medicine ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Foppen, Wouter, Nelleke Tolboom et Pim A. de Jong. « Systems Radiology and Personalized Medicine ». Journal of Personalized Medicine 11, no 8 (4 août 2021) : 769. http://dx.doi.org/10.3390/jpm11080769.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hacker, Marcus, Rodney J. Hicks et Thomas Beyer. « Applied Systems Biology—embracing molecular imaging for systemic medicine ». European Journal of Nuclear Medicine and Molecular Imaging 47, no 12 (7 avril 2020) : 2721–25. http://dx.doi.org/10.1007/s00259-020-04798-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Line, Bruce R. « Nuclear medicine information management systems ». Seminars in Nuclear Medicine 20, no 3 (juillet 1990) : 242–69. http://dx.doi.org/10.1016/s0001-2998(05)80033-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zaidi, Habib. « Multimodality molecular imaging : Paving the way for personalized medicine ». Medical Technologies Journal 1, no 3 (17 septembre 2017) : 44. http://dx.doi.org/10.26415/2572-004x-vol1iss3p44-46.

Texte intégral
Résumé :
Early diagnosis and therapy increasingly operate at the cellular, molecular or even at the genetic level. As diagnostic techniques transition from the systems to the molecular level, the role of multimodality molecular imaging becomes increasingly important. Positron emission tomography (PET), x-ray CT and MRI are powerful techniques for in vivo imaging. The inability of PET to provide anatomical information is a major limitation of standalone PET systems. Combining PET and CT proved to be clinically relevant and successfully reduced this limitation by providing the anatomical information required for localization of metabolic abnormalities. However, this technology still lacks the excellent soft-tissue contrast provided by MRI. Standalone MRI systems reveal structure and function, but cannot provide insight into the physiology and/or the pathology at the molecular level. The combination of PET and MRI, enabling truly simultaneous acquisition, bridges the gap between molecular and systems diagnosis. MRI and PET offer richly complementary functionality and sensitivity; fusion into a combined system offering simultaneous acquisition will capitalize the strengths of each, providing a hybrid technology that is greatly superior to the sum of its parts. This talk also reflects the tremendous increase in interest in quantitative molecular imaging using PET as both clinical and research imaging modality in the past decade. It offers a brief overview of the entire range of quantitative PET imaging from basic principles to various steps required for obtaining quantitatively accurate data from dedicated standalone PET and combined PET/CT and PET/MR systems including algorithms used to correct for physical degrading factors and to quantify tracer uptake and volume for radiation therapy treatment planning. Future opportunities and the challenges facing the adoption of multimodality imaging technologies and their role in biomedical research will also be addressed.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Stephane Mananga, Eugene. « Recent Advances of Radiation Detector Systems in Nuclear Medicine Imaging ». JOURNAL OF BIOINFORMATICS AND PROTEOMICS REVIEW 2, no 2 (2016) : 169–71. http://dx.doi.org/10.15436/2381-0793.16.1183.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lewellen, Tom K., Don DeWitt, Robert S. Miyaoka et Scott Hauck. « A Building Block for Nuclear Medicine Imaging Systems Data Acquisition ». IEEE Transactions on Nuclear Science 61, no 1 (février 2014) : 79–87. http://dx.doi.org/10.1109/tns.2013.2295037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lee, Daniel Y., et King C. P. Li. « Systems Diagnostics : The Systems Approach to Molecular Imaging ». American Journal of Roentgenology 193, no 2 (août 2009) : 287–94. http://dx.doi.org/10.2214/ajr.09.2866.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Duby, Tomas, Noam Kaplan et Yuval Zur. « 4749948 NMR imaging systems ». Magnetic Resonance Imaging 7, no 4 (juillet 1989) : VI—VII. http://dx.doi.org/10.1016/0730-725x(89)90516-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

&NA;. « 3M DryView Laser Imaging Systems ». Investigative Radiology 31, no 6 (juin 1996) : 385. http://dx.doi.org/10.1097/00004424-199606000-00015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sivananthan, U. M. « Medical imaging systems techniques and applications ; cardiovascular systems ». Radiography 5, no 2 (mai 1999) : 120. http://dx.doi.org/10.1016/s1078-8174(99)90044-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Bilgen, Mehmet. « Feasibility and Merits of Performing Preclinical Imaging on Clinical Radiology and Nuclear Medicine Systems ». International Journal of Molecular Imaging 2013 (30 décembre 2013) : 1–8. http://dx.doi.org/10.1155/2013/923823.

Texte intégral
Résumé :
Aim. Researchers have limited access to systems dedicated to imaging small laboratory animals. This paper aims to investigate the feasibility and merits of performing preclinical imaging on clinical systems. Materials and Methods. Scans were performed on rat and mouse models of diseases or injuries on four radiology systems, tomosynthesis, computed tomography (CT), positron emission tomography/computed tomography (PET-CT), and Magnetic Resonance Imaging (MRI), based on the availability at the author’s institute. Results. Tomosysthesis delineated soft tissue anatomy and hard tissue structure with superb contrast and spatial resolution at minimal scan time and effort. CT allowed high resolution volumetric visualization of bones. Molecular imaging with PET was useful for detecting cancerous tissue in mouse but at the expense of poor resolution. MRI depicted abnormal or intervened tissue at quality and resolution sufficient for experimental studies. The paper discussed limitations of the clinical systems in preclinical imaging as well as challenges regarding the need of additional gadgets, modifications, or upgrades required for longitudinally scanning animals under anesthesia while monitoring their vital signs. Conclusion. Clinical imaging technologies can potentially make cost-effective and efficient contributions to preclinical efforts in obtaining anatomical, structural, and functional information from the underlying tissue while minimally compromising the data quality in certain situations.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Kang, Shu, Ian R. Zurutuza et Raiyan T. Zaman. « Molecular Imaging in Medicine : Past, Present, and Future ». JSM Cardiothoracic Surgery 5, no 1 (14 décembre 2023) : 1–8. http://dx.doi.org/10.47739/2573-1297.cardiothoracicsurgery.1019.

Texte intégral
Résumé :
Recent advances in molecular imaging have facilitated early disease detection, diagnosis, and therapeutic efficacy monitoring. Clinicians aspire to achieve prompt diagnosis, provide personalized treatments, and accurately monitor and quantify therapy effectiveness. This has fueled a growing interest in tracing biomarkers and biochemicals associated with disease progression. Identifying crucial biomarkers and refining accurate, minimally invasive monitoring methods are the pivotal focuses of ongoing molecular imaging research. Consequently, there is a notable surge of interest in developing molecular probes and multi-modal systems to enhance imaging capabilities. This review is intended to provide an overview of the promise and limitations of different modalities employed in molecular imaging for patient care, along with the ongoing research aimed at innovating novel imaging agents and devices. Molecular imaging holds the potential to revolutionize disease diagnosis and treatment.
Styles APA, Harvard, Vancouver, ISO, etc.
13

&NA;. « 3M Medical Imaging Systems, Siemens Sign Qualification Agreement for 3M Dry View Laser Imaging Systems ». Investigative Radiology 31, no 4 (avril 1996) : 248. http://dx.doi.org/10.1097/00004424-199604000-00013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Samira Maliyeva, Samira Maliyeva. « BIOMEDICAL SMART HOME SYSTEMS ». PIRETC-Proceeding of The International Research Education & ; Training Centre 23, no 02 (19 avril 2023) : 125–33. http://dx.doi.org/10.36962/piretc23022023-125.

Texte intégral
Résumé :
Biomedical engineering is a system that includes the design, manufacture and operation of various systems, devices and methods used in the diagnosis and treatment of problems that may occur in human health. In recent years, as in the whole world, some important innovations in this field apply in the research conducted in Azerbaijan. Over the past 30 years, biomedical engineering has been established as an independent field of science and engineering. Currently, biological medicine is not limited to the field of medicine, it has continued to develop as a potential field, making an important contribution to the dentistry, veterinary medicine, rehabilitation, physical education, and sports fields. The types of biomedical devices available in stationary health care institutions are expressed in hundreds, and the number is expressed in thousands. From implant to stethoscope, from complex imaging medical devices such as MRI (magnetic resonance imaging) and X-rays devices to patient beds, many products that could be considered simpler have been designed by engineers. In modern hospitals, sophisticated engineering devices are used by doctors to treat patients. Biomedical smart home system or health-based smart homes are designed for patients who feel the need to return home after an average time from a hospital or healthcare facility, or who need to receive care at home. The article presents information about innovations in the mentioned field. Keywords: Bioengineering, biomedical equipment, biomedical sensor, smart home
Styles APA, Harvard, Vancouver, ISO, etc.
15

Chandra, Ramesh. « 4818943 Phantom for imaging systems ». Magnetic Resonance Imaging 7, no 5 (septembre 1989) : IV. http://dx.doi.org/10.1016/0730-725x(89)90428-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Punchard, William F., et Robert D. Pillsbury. « 4733189 Magnetic resonance imaging systems ». Magnetic Resonance Imaging 7, no 3 (mai 1989) : III. http://dx.doi.org/10.1016/0730-725x(89)90567-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Bath, M. « Evaluating imaging systems : practical applications ». Radiation Protection Dosimetry 139, no 1-3 (10 février 2010) : 26–36. http://dx.doi.org/10.1093/rpd/ncq007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

JARRITT, P. H., et P. D. ACTON. « PET imaging using gamma camera systems ». Nuclear Medicine Communications 17, no 9 (septembre 1996) : 758–66. http://dx.doi.org/10.1097/00006231-199609000-00006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

DENKBAŞ, EMIR B., et A. VASEASHTA. « NANOTECHNOLOGY IN MEDICINE AND HEALTH SCIENCES ». Nano 03, no 04 (août 2008) : 263–69. http://dx.doi.org/10.1142/s1793292008001313.

Texte intégral
Résumé :
The present investigation is aimed at the biomedical aspects of nanomaterials in medicine and health sciences. Synthesis of nanomaterials can be categorized into three main sections based on their system designation, viz. nanocolloidal systems, surface modification of the biomaterials at molecular level, and nanodevices. An overview of functionalized nanomaterials, devices, and systems in drug and gene delivery, controlled release systems, molecular imaging and diagnostics, cardiac therapy, dental care, orthopedics, and targeted cancer therapy is presented. We further present some preliminary results of our investigation of biodegradable polymeric nanospheres and nanofibers with significant applications in health and medicine.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Bamber, Jeffrey C. « Photoacoustic imaging in cancer medicine and research : Systems, results and future directions ». Journal of the Acoustical Society of America 145, no 3 (mars 2019) : 1777. http://dx.doi.org/10.1121/1.5101505.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Schillaci, Orazio, et Giovanni Simonetti. « Fusion Imaging in Nuclear Medicine—Applications of Dual-Modality Systems in Oncology ». Cancer Biotherapy and Radiopharmaceuticals 19, no 1 (février 2004) : 1–10. http://dx.doi.org/10.1089/108497804773391621.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Evans, A. « Breast Imaging Reporting and Data Systems ». Breast 3, no 2 (juin 1994) : 132. http://dx.doi.org/10.1016/0960-9776(94)90019-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Rivers, J., et I. Smith. « Performance Variation in Cardiac Imaging Systems ». Heart, Lung and Circulation 16 (janvier 2007) : S52—S53. http://dx.doi.org/10.1016/j.hlc.2007.06.135.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Cicinelli, Maria Vittoria, Michele Cavalleri, Maria Brambati, Rosangela Lattanzio et Francesco Bandello. « New imaging systems in diabetic retinopathy ». Acta Diabetologica 56, no 9 (15 juin 2019) : 981–94. http://dx.doi.org/10.1007/s00592-019-01373-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Ferrari, Victor A., Brian Whitman, James C. Blankenship, Matthew J. Budoff, Marco Costa, Neil J. Weissman et Manuel D. Cerqueira. « Cardiovascular Imaging Payment and Reimbursement Systems ». JACC : Cardiovascular Imaging 7, no 3 (mars 2014) : 324–32. http://dx.doi.org/10.1016/j.jcmg.2014.01.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

SASAGAKI, MICHIHIRO, MITSUHIRO MATSUMOTO et YOSHINOBU MORI. « CR PORTAL IMAGING : A LINAC GRAPHY USING STORAGE PHOSPHOR IMAGING SYSTEMS ». Japanese Journal of Radiological Technology 48, no 7 (1992) : 984–90. http://dx.doi.org/10.6009/jjrt.kj00003534082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

MATSUMOTO, MITSUHIRO, MICHIHIRO SASAGAKI et YOSHINOBU MORI. « CR PORTAL IMAGING : A LINAC GRAPHY BY STORAGE PHOSPHOR IMAGING SYSTEMS ». Japanese Journal of Radiological Technology 47, no 4 (1991) : 627–29. http://dx.doi.org/10.6009/jjrt.kj00003500111.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Crommelin, Daan J. A., Gert Storm et Peter Luijten. « ‘Personalised medicine’ through ‘personalised medicines’ : Time to integrate advanced, non-invasive imaging approaches and smart drug delivery systems ». International Journal of Pharmaceutics 415, no 1-2 (août 2011) : 5–8. http://dx.doi.org/10.1016/j.ijpharm.2011.02.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

&NA;. « Expert systems - a role in nuclear medicine ? » Nuclear Medicine Communications 12, no 7 (juillet 1991) : 565–68. http://dx.doi.org/10.1097/00006231-199107000-00001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Bilge, Sedat, Attila Aydin et Mehmet Eryilmaz. « Endotracheal intubation with tactical fiberoptic imaging systems ». American Journal of Emergency Medicine 34, no 3 (mars 2016) : 664–65. http://dx.doi.org/10.1016/j.ajem.2015.12.061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Tez, Selda, et Mesut Tez. « Imaging as a Complex Systems Science ». Radiology 249, no 3 (décembre 2008) : 1083. http://dx.doi.org/10.1148/radiol.2493081289.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Wilson, T. « Three-dimensional imaging in confocal systems ». Journal of Microscopy 153, no 2 (février 1989) : 161–69. http://dx.doi.org/10.1111/j.1365-2818.1989.tb00556.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Alavi, Abass, Thomas J. Werner, Ewa Ł. Stępień et Pawel Moskal. « Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine ». Bio-Algorithms and Med-Systems 17, no 4 (1 décembre 2021) : 203–12. http://dx.doi.org/10.1515/bams-2021-0186.

Texte intégral
Résumé :
Abstract Positron emission tomography (PET) imaging is the most quantitative modality for assessing disease activity at the molecular and cellular levels, and therefore, it allows monitoring its course and determining the efficacy of various therapeutic interventions. In this scientific communication, we describe the unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. We emphasize the critical importance of the development and synthesis of novel radiotracers (starting from the enormous impact of F-Fluorodeouxyglucose (FDG) introduced by investigators at the University of Pennsylvania (PENN)) and PET instrumentation. These innovations have led to the total-body PET systems enabling dynamic and parametric molecular imaging of all organs in the body simultaneously. We also present our perspectives for future development of molecular imaging by multiphoton PET systems that will enable users to extract substantial information (owing to the evolving role of positronium imaging) about the related molecular and biological bases of various disorders, which are unachievable by the current PET imaging techniques.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Glasenapp, A., A. Hess et J. T. Thackeray. « Molecular imaging in nuclear cardiology : Pathways to individual precision medicine ». Journal of Nuclear Cardiology 27, no 6 (6 septembre 2020) : 2195–201. http://dx.doi.org/10.1007/s12350-020-02319-6.

Texte intégral
Résumé :
AbstractGrowth of molecular imaging bears potential to transform nuclear cardiology from a primarily diagnostic method to a precision medicine tool. Molecular targets amenable for imaging and therapeutic intervention are particularly promising to facilitate risk stratification, patient selection and exquisite guidance of novel therapies, and interrogation of systems-based interorgan communication. Non-invasive visualization of pathobiology provides valuable insights into the progression of disease and response to treatment. Specifically, inflammation, fibrosis, and neurohormonal signaling, central to the progression of cardiovascular disease and emerging therapeutic strategies, have been investigated by molecular imaging. As the number of radioligands grows, careful investigation of the binding properties and added-value of imaging should be prioritized to identify high-potential probes and facilitate translation to clinical applications. In this review, we discuss the current state of molecular imaging in cardiovascular medicine, and the challenges and opportunities ahead for cardiovascular molecular imaging to navigate the path from diagnosis to prognosis to personalized medicine.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Krupinski, Elizabeth A., et Yulei Jiang. « Anniversary Paper : Evaluation of medical imaging systems ». Medical Physics 35, no 2 (28 janvier 2008) : 645–59. http://dx.doi.org/10.1118/1.2830376.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Shrestha, Raju, et Jon Yngve Hardeberg. « Evaluation and comparison of multispectral imaging systems ». Color and Imaging Conference 22, no 1 (3 novembre 2014) : 107–12. http://dx.doi.org/10.2352/cic.2014.22.1.art00018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Sung, Myong-Hee, et James G. McNally. « Live cell imaging and systems biology ». Wiley Interdisciplinary Reviews : Systems Biology and Medicine 3, no 2 (20 août 2010) : 167–82. http://dx.doi.org/10.1002/wsbm.108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Cheng, J. X., et X. S. Xie. « Vibrational spectroscopic imaging of living systems : An emerging platform for biology and medicine ». Science 350, no 6264 (26 novembre 2015) : aaa8870. http://dx.doi.org/10.1126/science.aaa8870.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Zanzonico, Pat. « Principles of Nuclear Medicine Imaging : Planar, SPECT, PET, Multi-modality, and Autoradiography Systems ». Radiation Research 177, no 4 (avril 2012) : 349–64. http://dx.doi.org/10.1667/rr2577.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Cruite, Irene, An Tang et Claude B. Sirlin. « Imaging-Based Diagnostic Systems for Hepatocellular Carcinoma ». American Journal of Roentgenology 201, no 1 (juillet 2013) : 41–55. http://dx.doi.org/10.2214/ajr.13.10570.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Fox, Martin D. « 31. Microcomputer Based Imaging Systems in Radiography ». Investigative Radiology 22, no 9 (septembre 1987) : S8. http://dx.doi.org/10.1097/00004424-198709000-00047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Richard, S., et J. H. Siewerdsen. « Optimization of dual-energy imaging systems using generalized NEQ and imaging task ». Medical Physics 34, no 1 (15 décembre 2006) : 127–39. http://dx.doi.org/10.1118/1.2400620.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Maslebu, Giner, et Suryasatriya Trihandaru. « The Application of Nuclear Medicine ». Indonesian Journal of Physics and Nuclear Applications 1, no 2 (30 juin 2016) : 81. http://dx.doi.org/10.24246/ijpna.v1i2.81-84.

Texte intégral
Résumé :
Currently, the practice of nuclear medicine in modern countries comprises a large number of procedures. It is applied to study function of organs/body systems, to visualize, to characterize, and to quantify the functional state of lesions and for targeted radionuclide therapy. This overview presents all kinds of application in nuclear medicine services. Instrumentation and radioactive/radiolabeled substances are the basic components for application. Biotechnology contributes to the development and production of biomolecules used in radiopharmaceuticals. As a diagnostic modality, imaging depicts radioactivity distribution as a function of time. Hybrid imaging provides more precise localization and definition of le-sions as well as molecular imaging cross validation. Counting tests study invivo<br />organ functions externally or assess analytes in the biologic samples. Radiopharmaceutical therapy can be applied directly into the lesion or targeted systemically. Nanotechnology facilitates targeting and opens the development of bimodal techniques. In addition, neutron application contributes to the advancement of nuclear medicine services, such as neutron activation analysis, neutron teletherapy and neutron capture therapy.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Glenn, Marcus E. « Image compression for medical imaging systems ». Journal of Medical Systems 11, no 2-3 (juin 1987) : 149–56. http://dx.doi.org/10.1007/bf00992349.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Gallot, Guilhem. « Terahertz sensing in biology and medicine ». Photoniques, no 101 (mars 2020) : 53–58. http://dx.doi.org/10.1051/photon/202010153.

Texte intégral
Résumé :
Terahertz radiation offers new contrasts with biological systems, without markers or staining, at the molecular, cellular or tissue level. Thanks to technological advances, it is increasingly emerging as a solution of choice for directly probing the interaction with molecules and biological solutions. Applications range from dynamics of biological molecules to imaging of cancerous tissues, including ion, protein and membrane sensors.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Barneveld Binkhuysen, F. H. « Picture Archiving and Communication Systems (PACS) in Medicine ». European Journal of Radiology 14, no 1 (janvier 1992) : 78–79. http://dx.doi.org/10.1016/0720-048x(92)90070-p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

TODD-POKROPEK, A., E. VAURAMO, P. COSGRIFF, I. SIPPO-TUJUNEN et K. BRITTON. « User requirements for information systems in nuclear medicine ». Nuclear Medicine Communications 13, no 1 (1992) : 299–305. http://dx.doi.org/10.1097/00006231-199205000-00002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Kim, Joong, et Jae Lee. « Recent Advances in Hybrid Molecular Imaging Systems ». Seminars in Musculoskeletal Radiology 18, no 02 (8 avril 2014) : 103–22. http://dx.doi.org/10.1055/s-0034-1371014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

MacDonald, Scott A., C. Grant Willson et Jean M. J. Frechet. « Chemical Amplification in High-Resolution Imaging Systems ». Accounts of Chemical Research 27, no 6 (juin 1994) : 151–58. http://dx.doi.org/10.1021/ar00042a001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Mafee, Mahmood F., Mark Rapoport, Afshin Karimi, Sameer A. Ansari et Jay Shah. « Orbital and Ocular Imaging Using 3- and 1.5-T MR Imaging Systems ». Neuroimaging Clinics of North America 15, no 1 (février 2005) : 1–21. http://dx.doi.org/10.1016/j.nic.2005.02.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie