Littérature scientifique sur le sujet « Image Correlation Spectroscopy »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Image Correlation Spectroscopy ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Image Correlation Spectroscopy"

1

Nohe, A., et N. O. Petersen. « Image Correlation Spectroscopy ». Science's STKE 2007, no 417 (11 décembre 2007) : pl7. http://dx.doi.org/10.1126/stke.4172007pl7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wiseman, P. W., J. A. Squier, M. H. Ellisman et K. R. Wilson. « Two-photon image correlation spectroscopy and image cross-correlation spectroscopy ». Journal of Microscopy 200, no 1 (octobre 2000) : 14–25. http://dx.doi.org/10.1046/j.1365-2818.2000.00736.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Digman, Michelle A., et Enrico Gratton. « Scanning image correlation spectroscopy ». BioEssays 34, no 5 (13 mars 2012) : 377–85. http://dx.doi.org/10.1002/bies.201100118.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kurniawan, Nicholas A., et Raj Rajagopalan. « Probe-Independent Image Correlation Spectroscopy ». Langmuir 27, no 6 (15 mars 2011) : 2775–82. http://dx.doi.org/10.1021/la104478x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hendrix, Jelle, Tomas Dekens et Don C. Lamb. « Arbitrary-Region Image Correlation Spectroscopy ». Biophysical Journal 110, no 3 (février 2016) : 176a. http://dx.doi.org/10.1016/j.bpj.2015.11.983.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wiseman, Paul W. « Image Correlation Spectroscopy : Principles and Applications ». Cold Spring Harbor Protocols 2015, no 4 (avril 2015) : pdb.top086124. http://dx.doi.org/10.1101/pdb.top086124.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hendrix, Jelle, Tomas Dekens, Waldemar Schrimpf et Don C. Lamb. « Arbitrary-Region Raster Image Correlation Spectroscopy ». Biophysical Journal 111, no 8 (octobre 2016) : 1785–96. http://dx.doi.org/10.1016/j.bpj.2016.09.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Semrau, Stefan, Laurent Holtzer, Marcos Gonzalez-Gaitan et Thomas Schmidt. « Particle Image Cross Correlation Spectroscopy (PICCS) ». Biophysical Journal 98, no 3 (janvier 2010) : 182a. http://dx.doi.org/10.1016/j.bpj.2009.12.976.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Longfils, Marco, Nick Smisdom, Marcel Ameloot, Mats Rudemo, Veerle Lemmens, Guillermo Solís Fernández, Magnus Röding, Niklas Lorén, Jelle Hendrix et Aila Särkkä. « Raster Image Correlation Spectroscopy Performance Evaluation ». Biophysical Journal 117, no 10 (novembre 2019) : 1900–1914. http://dx.doi.org/10.1016/j.bpj.2019.09.045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rossow, Molly J., Jennifer M. Sasaki, Michelle A. Digman et Enrico Gratton. « Raster image correlation spectroscopy in live cells ». Nature Protocols 5, no 11 (14 octobre 2010) : 1761–74. http://dx.doi.org/10.1038/nprot.2010.122.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Image Correlation Spectroscopy"

1

Sergeev, Mikhail. « High order autocorrelation analysis in image correlation spectroscopy ». Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81437.

Texte intégral
Résumé :
This thesis studies optical microscopy based high order autocorrelation approaches for measuring molecular aggregation of fluorescently labeled particles in fluid systems. As the particles randomly diffuse into and out of the volume defined by the focus of a confocal laser beam illumination, the collected fluorescence intensity fluctuates. Fluorescence Correlation Spectroscopy (FCS) and Image Correlation Spectroscopy (ICS) have been used as methods which analyse temporal and spatial intensity fluctuations, and provide quantitative information of the molecular transport processes. Theoretical expressions for the high order autocorrelation function magnitudes for a non-interactive model are derived as well as their fitting equations for single- and multicomponent diffusion.
We present an experimental verification of the model applied to simple systems. Solutions of fluorescent microspheres of well-defined size have been imaged using confocal laser scanning microscopy. It has been shown that translational diffusion coefficients were not very sensitive to molecular size dispersion, which made a first order autocorrelation approach to be somewhat ineffective for dealing with multicomponent systems. We demonstrate that the number densities of a mixture of two fluorescent particles can be determined analyzing the higher order autocorrelation function magnitudes. Numerical simulations have been analyzed for testing the experimental tools we use. The technique outlined may be developed to detect and characterize aggregates of fluorescently labeled biological molecules such as membrane proteins and cell surface receptors. Such quantitative aggregation measurements, therefore, can provide information about the mechanism of intercellular signaling which is believed to depend on the oligomerization of cell membrane protein receptors.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nicovich, Philip R. « Widefield fluorescence correlation spectroscopy ». Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33849.

Texte intégral
Résumé :
Fluorescence correlation spectroscopy has become a standard technique for modern biophysics and single molecule spectroscopy research. Here is presented a novel widefield extension of the established single-point technique. Flow in microfluidic devices was used as a model system for microscopic motion and through widefield fluorescence correlation spectroscopy flow profiles were mapped in three dimensions. The technique presented is shown to be more tolerant to low signal strength, allowing image data with signal-to-noise values as low as 1.4 to produce accurate flow maps as well as utilizing dye-labeled single antibodies as flow tracers. With proper instrumentation flows along the axial direction can also be measured. Widefield fluorescence correlation spectroscopy has also been utilized to produce super-resolution confocal microscopic images relying on the single-molecule microsecond blinking dynamics of fluorescent silver clusters. A method for fluorescence modulation signal extraction as well as synthesis of several novel noble metal fluorophores is also presented.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kolin, David. « k-Space image correlation spectroscopy : theory, verification, and applications ». Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21933.

Texte intégral
Résumé :
This thesis is about the use and development of new fluorescence correlation techniques to measure the dynamics, number density, and aggregation state of fluorescently labelled proteins in living cells. An extensive investigation of the accuracy and precision of temporal image correlation spectroscopy (TICS) is presented first. Using computer simulations of laser scanning microscopy image time series, the effect of spatiotemporal sampling, particle density, noise, and photobleaching of fluorophores on the recovery of transport coefficients and number densities by TICS is investigated. It is shown that photobleaching of the fluorophore can significantly perturb TICS measurements. The theory of k-space image correlation spectroscopy (kICS) is then developed in detail. kICS involves Fourier transforming each image in an image series, and then correlating these transforms, in time. This technique measures the number density, diffusion coefficient, and velocity of fluorescently labelled macromolecules in a cell membrane. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or "blinking." We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. The wide applicability of the technique is shown by imaging cells transfected with fluorescent protein, and quantum dot (QD) labelled cells on two-photon and total internal reflection fluorescence microscopes. Finally, kICS is used to measure immune T cell receptor (TCR) clustering in live cells using QDs as labels. kICS quantifies the aggregation of TCR by two different approaches. The first uses spatial intensity fluctuat
Cette thèse est à propos de l'utilisation et du développement de nouvelles techniques de corrélation de fluorescence afin de mesurer les dynamiques, la densité, et l'état d'agrégation de protéines marquées par fluorescence dans des cellules vivantes. Une vaste recherche de la précision de la spectroscopie temporelle par corrélations d'images (STCI) est premièrement présentée. En utilisant des simulations informatiques à balayage de laser de séries d'images de microscopie, l'effet de l'échantillon spatiotemporelle, densité de particules, le bruit, la fréquence de prises d'échantillons, et le photoblanchiment des fluorophores lors de la mesure des coefficients de transport et la densité par STCI sont examinés. C'est démontré que le photoblanchiment des fluorophores perturbent de manière significative les mesures STCI. La théorie de la spectroscopie de corrélations d'images d'espace-k (CIEk) est développée en détail. CIEk implique la transformation Fourier de chaque image dans une série d'images, et ensuite de faire la corrélation de ces transformations, dans le temps. Cette technique mesure la densité, le coefficient de diffusion, et la vélocité de macromolécules marquées fluorescentes dans une membrane de cellules. Contrairement aux techniques de corrélation espace-r, nous démontrons que CIEk peut mesurer les dynamiques précises, même en présence de complexes photoblanchiments de fluorophores et/ou "clignotement." Nous utilisons des simulations comme une preuve de principes pour démontrer que les densités et les coefficients de transport peuvent être extraits en utilisant cette technique. Nous présentons des mesures d'étalonnage avec des microsphères fluorescentes imagées sur un microscope confocal, qui mesurent la diffusion de coefficients Stokes-Einstein, et les vitesses d'écroulement qui correspondent avec les mesures de suivi de particules uniques. L'application vaste de cette technique est démontrée avec d
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hébert, Benedict. « Spatio-temporal image correlation spectroscopy : development and implementation in living cells ». Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102507.

Texte intégral
Résumé :
The object of this thesis is to develop a new extension of Image Correlation Spectroscopy (ICS) that can measure velocity vectors for flowing protein populations in living cells. This new technique, called Spatio-Temporal Image Correlation Spectroscopy (STICS), allows measurement of both diffusion coefficients and velocity vectors (magnitude and direction) from fluorescence microscopy image time series of fluorescently labeled cellular proteins via monitoring of the time evolution of the full space-time correlation function of the intensity fluctuations. By using filtering in Fourier space to remove frequencies associated with immobile or slow components, it is possible to measure the protein transport even in the presence of a large fraction of immobile species that are static in the image series. The STICS method can generate complete transport maps of proteins within sub-regions of the basal membrane even if the protein concentration is too high to perform single particle tracking measurements, and it can be applied to any type of fluorescence microscopy image time series. This thesis presents the background theory, computer simulations, and analysis of measurements on fluorescent microspheres and fixed cell samples to demonstrate proof of principle, capabilities, and limitations of the method. Visible fluorescent proteins (VFPs) were used to label a variety of the proteins involved in cell-to-extra-cellular-matrix adhesions, including focal adhesion kinase, paxillin, alpha-actinin, alpha5-integrin, talin, vinculin and actin. Various fusion protein pairs were transfected in living cells and imaged using both laser scanning microscopy and total internal reflection microscopes. Using STICS analysis, co-transport maps of proteins were generated within protruding sub-regions of the basal membrane. The new space time image correlation method can probe the mechanistic details of the hypothesized molecular clutch that regulates the extra cellular matrix/cytoskeletal interactions during migration. The technique was also applied to mapping fluid flow in migrating keratocytes in order to elucidate the role that fluid flow plays in migrating cells.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Coppola, Stefano, Daniela Pozzi, Giulio Caracciolo et Thomas Schmidt. « Intracellular trafficking of lipoplexes : a particle image correlation spectroscopy (PICS) study ». Diffusion fundamentals 20 (2013) 27, S. 1, 2013. https://ul.qucosa.de/id/qucosa%3A13592.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Srivastava, Mamta. « Image cross-correlation spectroscopy, development and applications on living and fixed cells ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0014/NQ40290.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Schwartzentruber, Jeremy. « k-space image correlation spectroscopy (kICS) : accuracy and precision, capabilities and limitations ». Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97079.

Texte intégral
Résumé :
k-space image correlation spectroscopy (kICS) is a recently developed technique that can be used to measure the transport dynamics and number density of fluorescently labeled molecules in living cells, while being completely unbiased for transport measurements by fluorophore photobleaching or blinking. Whereas the precision of fluorescence correlation spectroscopy (FCS) and temporal image correlation spectroscopy (TICS) have been investigated in detail, no such study exists for kICS. In this thesis, we present a thorough characterization of the accuracy and precision of kICS for measurements of 2D diffusion over a range of imaging frame rates, spatial dimensions, and particle distributions. We use computer simulations as a primary tool to vary simulated imaging conditions and data analysis parameters, and thereby obtain a statistical description of kICS error.We find that kICS measurements of diffusion are consistently biased low for image regions smaller than ~100 μm2 and we examine two alternative methods for correcting the bias. We also report the surprising discovery that kICS can measure 2D particle diffusion that is at least ten times faster than can be measured with other methods that compute correlations between successive image frames; this is possible because kICS measures long-range correlations that persist after particles have exited the specific volume of the laser focus where they were found in a previous frame. In addition, we show that unlike FCS or TICS, kICS measurements are accurate even when analyzing highly nonuniform particle distributions, as would be found after local release or photoactivation of fluorescently-tagged biological molecules. Finally, we describe a method of estimating the uncertainty from a single kICS measurement of diffusion, which is useful when measurements cannot easily be repeated.We use experimental fluorescence microscopy image series of diffusing microspheres to confirm that bias in kICS depends on the size of the image region analyzed, and we test the two methods of correcting the bias. We also apply kICS to measure the diffusion of membrane biomolecules tagged with blinking quantum dots in living cells, and compare the results with single particle tracking analyses of the same data.
La spectroscopie par corrélation d'images dans l'espace vectoriel (kICS) est une nouvelle technique qui permet de mesurer la dynamique du transport moléculaire ainsi que le nombre de molécules fluorescentes à l'intérieur de cellules vivantes et de leurs membranes. Cette technique présente l'avantage de fournir des mesures de dynamique de transport non biaisées par le photo-blanchiment et le clignotement des fluorophores. Alors que la précision des techniques de spectroscopie de corrélation de fluorescence (FCS) et de spectroscopie par corrélation temporelle d'images (TICS) a déjà été étudiée en détail, aucune étude n'existe concernant la technique kICS. Dans cette thèse, je présente une caractérisation approfondie de l'exactitude et de la précision de kICS sur des mesures de diffusion 2D pour une large plage de fréquences d'acquisition d'image, de tailles d'image et de distributions spatiales du nombre de particules. J'ai principalement utilisé des simulations par ordinateur afin de pouvoir modifier les conditions d'acquisition et d'analyse d'image et ainsi d'obtenir une description statistique des erreurs de kICS.Il ressort de mes analyses que les mesures de diffusions effectuées par kICS donnent des valeurs systématiquement trop faibles lorsque les régions imagées ont une surface de moins de ~100 μm2, j'ai donc étudié deux méthodes alternatives afin de corriger ce biais. J'ai aussi pu constaté que kICS permet de mesurer des diffusions de particules en 2D pour des vitesses au moins dix fois supérieures à celles des diffusions mesurées par des méthodes corrélant des images successives. Ceci est rendu possible par le fait que kICS mesure des corrélations à longue distance qui persistent même lorsque la particule quitte le point focal d'illumination du laser qu'elle occupait lors de la prise de l'image précédente. En outre, je montre que, contrairement à FCS ou TICS, les mesures effectuées par kICS sont exactes y compris lorsque des régions ayant une distribution spatiale de particules fortement hétérogène sont analysées, cas rencontré notamment lors de la libération locale ou la photo-activation de molécules biologiques marquées par un fluorophore. Finalement, je décris une méthode permettant d'estimer l'incertitude de la mesure à partir d'une seule donnée de diffusion obtenue par kICS. Ceci est particulièrement utile par exemple lorsqu'il est difficile de répéter une acquisition.J'ai utilisé des mesures expérimentales de diffusion de microsphères pour confirmer que le biais de kICS dépend bien de la taille de la région analysée et j'ai testé l'efficacité des deux méthodes proposées pour corriger ce biais. J'ai également employé kICS afin de mesurer la diffusion dans des cellules vivantes de biomolécules membranaires marquées par point quantique et j'ai comparé ces résultats avec ceux effectués sur les mêmes images par suivi de particules isolées.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Guillet, Dominique. « Spatio-temporal image correlation spectroscopy : Extension to three dimensions and application to biological systems ». Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110545.

Texte intégral
Résumé :
The object of this thesis is to present work done using spatio-temporal image correlation spectroscopy (STICS), a technique that uses fluorescence intensity fluctuations in a microscopy image time series to calculate a complete space-time correlation function in order to measure transport dynamics in cells. The time evolution of this correlation function gives information on the magnitude and direction of a flow of fluorescent particles sampled in the image series. First, a new application of STICS to plant cell biology is shown. In dividing plant cells, delivery of new cell wall material to the forming cell plate requires intricate coordination of secretory vesicle trafficking and delivery. In this work, STICS is used to measure vesicle dynamics during plant cell division. It was discovered that vesicle transport to the plane of division occurs in three phases, each with its characteristic flow patterns and range of velocities, which directly reflect the rate of growth of the forming cell plate. The second part of this thesis presents the extension of the STICS technique to a third spatial dimension. The development of this new technique, called 3D STICS, allows the study of transport dynamics in three dimensions, which is more relevant in tissues and non adherent cells which are inherently 3D. Computer simulations were performed to test the accuracy and precision of the technique under a range of parameters such as particle density of immobile and moving populations; and number of images, velocity and resolution in the third spatial dimension. A comparison between values of velocities in a 2D plane recovered using STICS and its new 3D version is also presented.
L'objet de cette thèse est de présenter des travaux faits à l'aide de la spectroscopie par corrélation spatiotemporelle d'images (STICS), une technique qui utilise les fluctuations d'intensité dans une série d'images capturées à l'aide d'un microscope par fluorescence pour calculer la fonction complète de corrélation spatiotemporelle, et ainsi mesurer la dynamique du transport de protéines à l'intérieur de cellules vivantes. L'évolution temporelle de cette fonction de corrélation donne de l'information sur la direction et la vitesse d'un flot de particules fluorescentes présentes dans la série d'images. Tout d'abord, une nouvelle application de la technique en biologie végétale est présentée. Lors de la division cellulaire végétale, le transport du matériel membranaire nécessaire à la formation de la plaque cellulaire requiert une grande précision dans la coordination du transport et de la livraison des vésicules de sécrétion. Dans cette thèse, STICS est utilisée pour mesurer la dynamique de ces vésicules pendant la division cellulaire végétale. Les résultats obtenus révèlent l'existence de trois phases dans le transport des vésicules de sécrétion au site de division cellulaire, chacune présentant une échelle de vitesse et des motifs de mouvement caractéristiques qui se reflètent dans le taux de croissance de la plaque cellulaire. Dans un deuxième temps, le développement de STICS pour inclure l'analyse de la troisième dimension spatiale est présenté. Cette nouvelle technique, appelée STICS 3D, permet l'étude de dynamiques en trois dimensions, ce qui est plus pertinent que la version deux-dimensionnelle pour les tissus et les cellules non adhérentes, qui ont un environnement intrinsèquement 3D. Des simulations par ordinateur ont été effectuées pour déterminer l'exactitude, la précision et les limites de la technique pour un éventail de paramètres comme la vitesse, le nombre d'images et la résolution dans la troisième dimension spatiale ainsi que la densité des populations immobiles et en mouvement. Une comparaison entre les résultats obtenus avec STICS et la nouvelle version 3D de la technique est également présentée.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pandžić, Elvis. « Measurement of protein transport and confinement in heterogeneous membranes by k-space image correlation spectroscopy ». Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116842.

Texte intégral
Résumé :
This thesis presents the application of k-space Image Correlation Spec- troscopy (kICS) to the analysis of fluorescence microscopy image time series for the measurement of particle diffusion in heterogeneous membranes, composed of micro- domains. The extension, testing and application of kICS for such measurements is developed both in silico with simulation and with in vivo cellular experiments.Connections between kICS analysis and other existing fluorescent microscopy techniques used in the study of heterogeneous membranes, such as single particle tracking (SPT) and spot vary Fluorescence Correlation Spectroscopy (FCS) are introduced. This is followed by the development of kICS theory of fluorescent particle diffusion within a heterogeneous two dimensional (2D) environment. Two possible membrane heterogeneities, isolated lipid micro-domains and actin proximal meshwork, are considered separately. The emergent models suggest that the kICS correlation function (CF) can be fit by a sum of two Gaussians in the case of particle diffusion in the presence of isolated micro-domains. These two fit components, called 'fast' and 'slow', with the fast associated with the rapid decay of the kICS CF at small spatial frequencies due to particle motion on large spatial scales outside domains while the slow component refers to the confined particle motion on large spatial frequencies or small spatial scales in domains. On the other hand, the meshwork confinement is well fit with a single Gaussian model for the analysis of kICS CF. These models suggest that the exponents and amplitudes of the fits embed the characteristic system parameters such as diffusion coefficients outside and inside domains, the partitioning rates, micro-domains radii and mesh pore size.Furthermore, systematic simulations to study different confinement scenarios were conducted and the calculated kICS correlation functions were fit and the output interpreted for recovery of self system parameters. The characterization of the simulated data suggests that kICS CFs exhibit various confinement dependent features, such as decays due to effective slow and fast dynamics populations and effective domain sizes. The in silico characterization of different confinement scenarios, suggests a connection between the apparent measured confinement properties, and the set system defining parameters. We explore the range and limits where confinement effects can be detected and accurately measured by kICS analysis. Possible systematic errors in the values of the fit extracted parameters due to background noise is discussed with possible alternative solutions.Finally, we apply this extension of kICS to the heterogeneous membrane en- vironment to explore the confinement dynamics of GPI-GFP anchored proteins in the basal plasma membrane of COS-7 cells. We employ a novel labelling approach of GPI-GFP using anti-GFP-Alexa594 and image the protein in COS-7 cell mem- branes with TIRF microscopy. Cells were exposed to enzymatic treatments, using the Cholesterol Oxidase (COase) and Sphingomyelinase (SMase), in order to dis- rupt membrane domains and change GPI-GFP confinement dynamics. We observe that GPI-GFP mobility and the effective domain size measured correlates with the enzymatic exposure time. We attribute it to the conversion of the membrane domain constituents, cholesterol and sphingomyelin, upon the enzymatic reactions, leading to membrane domain that are effectively larger and leakier. Finally, we conclude with possible improvements and future directions.
La thèse qui suit est a propos de l'adaptation de la technique de la spectroscopie par la corrélation des images dans l'espace de Fourier, appelle kICS. La nouveauté consiste en utilisation de kICS pour analyser les séries temporelles d'images fluorescentes afin de caractériser la diffusion des particules en présence des membranes hétérogénes, composées de micro-domaines.Tout d'abord, une parallèle est exposée entre l'analyse fondée sur kICS pro- posé ci-dessus et d'autres techniques de microscopie à fluorescence existantes et utilisées dans l'étude des membranes hétérogénes. Ensuite, on expose le développement de la théorie de kICS dans les cas de la diffusion des particules fluorescentes dans un espace hétérogène bidimensionnel (2D). Les deux hétérogénéités membranaires possibles, micro-domaines lipidiques isolés et le réseau de l'actine proximale, sont considérés séparément. Les modèles émergents suggèrent que la fonction de corrélation de kICS doit être caractérisé par une somme de deux Gaussiennes dans le cas de la dynamique des particules en présence de micro-domaines isolés. Ces deux éléments, appelés 'rapide' et 'lent', représentent les composantes dynamiques a deux échelles d'espace différentes. La rapide est associé à la décroissance rapide de la fonction de corrélation de kICS à petites fréquences spatiales dues au mouvement des particules sur de grandes échelles spatiales. La composante lente réfère au mouvement des particules confinées à des petites échelles spatiales, observées sur de grandes fréquences spatiales de kICS. D'autre part, la fonction de corrélation de kICS due au confinement par le réseau du cytosquelette peut être caractérise par unique décroissance Gaussienne. Ces modèles suggèrent que les exposants et les amplitudes obtenus par la caractérisation de la fonction kICS dépend des paramètres caractéristiques du système tels que les coefficients de diffusion à l'extérieur et à l'intérieur de domaines, les taux de migration de particules vers intérieur ou extérieur de micro-domaines ou des tailles de porosités du réseaux du cytosquelette.Les études systématiques par les simulations des scénarios différents de confinement et leurs effets sur la fonction de corrélation de kICS ont été explorés. La caractérisation des données simulées suggèrent que les fonctions de corrélation ont des caractéristiques qui dépendent de confinement et les propriétés spécifiques, tels que la dynamique des populations lents et rapides et la tailles effective de micro-domaines. La caractérisation des scénarios de confinement différents, représente les liens entre les propriétés apparentes mesurées de confinement, et un ensemble de paramètres définissant hétérogénéité. Nous explorons les limites pour lesquelles des effets de confinement ne sont pas observées dans la fonction de corrélation kICS. Les éventuelles erreurs systématiques dans les valeurs des paramètres extraits à cause du bruit de fond est discuté avec des possibles solutions. Finalement, nous utilisons l'analyse afin d'explorer la dynamique de confinement de la protéine ancrée à GPI-GFP dans la membrane plasmique basale des cellules COS-7. Nous explorons une approche nouvelle de la conjugaison entre le GPI-GFP et les anti-GFP-Alexa594 et imagé par la microscopie TIRF. Les cellules ont été exposées à des traitements enzymatiques, par Coase et SMase, afin de perturber domaines membranaires et changer la dynamique de confinement de GPI-GFP. Les réactions enzymatiques augmentent la mobilité et la taille effective des domaines de GPI-GFP. Nous attribuons cela à la conversion des constituants des domaines, le cholestérol et la sphingomyéline, par les réactions enzymatiques, ce qui conduit aux plus grandes et moins étanches domaines membranaires.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Le, Andy Vinh. « Blood Microflow Characterization Using Micro-Particle Image Velocimetry and 2-Beam Fluorescence Cross-Correlation Spectroscopy ». Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41535.

Texte intégral
Résumé :
Blood flow through microcirculation in both simple and complex geometry has been difficult to predict due to the composition and complex behavior of blood at the microscale. Blood is a dense suspension of deformable red blood cells that is comparable in dimensions to the microchannels that it flows through. As a result, rheological properties at the microscale can vastly differ from bulk rheological properties due to non-continuum effects. To further develop our understanding of blood microflow; experimental techniques should be explored. In this work, we explore micro-particle image velocimetry (μPIV) and two-beam fluorescence cross-correlation spectroscopy (2bFCCS) in the application of characterizing blood in microflow conditions. For the development of the μPIV analysis, a polydimethylsiloxane co-flow channel is used to observe blood flow in controlled conditions. Flow conditions (velocity profile and blood layer thickness) are selected based on an analytical model and compared to experimental measurement. The experimental results presented indicate that current flow conditions are inadequate in providing a controlled rate of shear on the blood layer in the co-flow channel and further optimization are required to improve the measurement of the velocity profile. For the development of the 2bFCCS application for blood flow analysis, a wide glass capillary microfluidic device is used to complete the verification of fluorescence fluid admissibility, the effect of laser intensity on inducing photobleaching and the velocity measurement performance. The experimental measurement of the velocity profile is validated against the theoretical profile for a rectangular channel. Results of the velocity profile of high concentration red blood cells show promise in the technique’s ability to measure blood microflows closer to physiological conditions.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Image Correlation Spectroscopy"

1

Horing, Norman J. Morgenstern. Random Phase Approximation Plasma Phenomenology, Semiclassical and Hydrodynamic Models ; Electrodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0010.

Texte intégral
Résumé :
Chapter 10 reviews both homogeneous and inhomogeneous quantum plasma dielectric response phenomenology starting with the RPA polarizability ring diagram in terms of thermal Green’s functions, also energy eigenfunctions. The homogeneous dynamic, non-local inverse dielectric screening functions (K) are exhibited for 3D, 2D, and 1D, encompassing the non-local plasmon spectra and static shielding (e.g. Friedel oscillations and Debye-Thomas-Fermi shielding). The role of a quantizing magnetic field in K is reviewed. Analytically simpler models are described: the semiclassical and classical limits and the hydrodynamic model, including surface plasmons. Exchange and correlation energies are discussed. The van der Waals interaction of two neutral polarizable systems (e.g. physisorption) is described by their individual two-particle Green’s functions: It devolves upon the role of the dynamic, non-local plasma image potential due to screening. The inverse dielectric screening function K also plays a central role in energy loss spectroscopy. Chapter 10 introduces electromagnetic dyadic Green’s functions and the inverse dielectric tensor; also the RPA dynamic, non-local conductivity tensor with application to a planar quantum well. Kramers–Krönig relations are discussed. Determination of electromagnetic response of a compound nanostructure system having several nanostructured parts is discussed, with applications to a quantum well in bulk plasma and also to a superlattice, resulting in coupled plasmon spectra and polaritons.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Image Correlation Spectroscopy"

1

Bonor, Jeremy, et Anja Nohe. « Image Correlation Spectroscopy to Define Membrane Dynamics ». Dans Methods in Molecular Biology, 353–64. Totowa, NJ : Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-404-3_21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pandzic, Elvis, et Paul W. Wiseman. « Probing Membrane Heterogeneity with k-space Image Correlation Spectroscopy ». Dans Springer Series in Biophysics, 147–65. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66601-3_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mazza, Davide, Timothy J. Stasevich, Tatiana S. Karpova et James G. McNally. « Monitoring Dynamic Binding of Chromatin Proteins In Vivo by Fluorescence Correlation Spectroscopy and Temporal Image Correlation Spectroscopy ». Dans Methods in Molecular Biology, 177–200. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-477-3_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Moreno, David F., et Martí Aldea. « Coincidence Analysis of Molecular Dynamics by Raster Image Correlation Spectroscopy ». Dans Computer Optimized Microscopy, 375–84. New York, NY : Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9686-5_17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lacoste, Judith, Charles Vining, Dongmei Zuo, Aleksandrs Spurmanis et Claire M. Brown. « Optimal Conditions for Live Cell Microscopy and Raster Image Correlation Spectroscopy ». Dans Reviews in Fluorescence 2010, 269–309. New York, NY : Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9828-6_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Makaremi, Sara, et Jose Moran-Mirabal. « Measuring the Lateral Diffusion of Plasma Membrane Receptors Using Raster Image Correlation Spectroscopy ». Dans Methods in Molecular Biology, 289–303. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2051-9_17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Paviolo, Chiara, James W. M. Chon et Andrew H. A. Clayton. « The Effect of Nanoparticles on the Cluster Size Distributions of Activated EGFR Measured with Photobleaching Image Correlation Spectroscopy ». Dans Advances in Experimental Medicine and Biology, 41–52. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3065-0_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wiseman, Paul W. « Image Correlation Spectroscopy ». Dans Methods in Enzymology, 245–67. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-388422-0.00010-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wiseman, P. W. « 2.12 Image Correlation Spectroscopy ». Dans Comprehensive Biophysics, 246–59. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-374920-8.00220-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Digman, Michelle A., Milka Stakic et Enrico Gratton. « Raster Image Correlation Spectroscopy and Number and Brightness Analysis ». Dans Methods in Enzymology, 121–44. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-388422-0.00006-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Image Correlation Spectroscopy"

1

Wiseman, Paul W., et Jeffrey A. Squier. « Two-photon image correlation spectroscopy and image cross-correlation spectroscopy ». Dans BiOS 2001 The International Symposium on Biomedical Optics, sous la direction de Ammasi Periasamy et Peter T. C. So. SPIE, 2001. http://dx.doi.org/10.1117/12.424565.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tseng, C. S., P. Tin, M. de Mul, W. V. Meyer, J. B. Lando et J. A. Mann. « Laser Light Scattering Spectroscopy Combined With Brewster Angle Microscopy : nCB and Polymer Monolayers ». Dans Photon Correlation and Scattering. Washington, D.C. : Optica Publishing Group, 1996. http://dx.doi.org/10.1364/pcs.1996.fa.5.

Texte intégral
Résumé :
Brewster Angle Microscopy (BAM) is a powerful tool to image the structure of monomolecular films1,2. Laser Light Scattering Spectroscopy (LLSS) is used to measure the surface visco-elastic coefficients Ke=G¯+K¯ and KV=η¯+ζ¯ as a function of surface density. In addition, since the surface pressure vs. surface density is known, the isotherm compressibility vs. surface density can be estimated. These numbers will be compared for the liquid crystal, nCB systems that collapse to multilayers reversibly and for certain polymer systems to be used as alignment layers in liquid crystal video display applications. The footprints of the incident beams for BAM and LLSS are superposed so the Ke, Kv coefficients can be associated with the morphology displayed by the BAM image. The BAM images show that convective transport is usually present unless the monolayer is very rigid. In many cases the monolayer in the footprint of the laser beams is not either homogeneous or isotropic. Indeed, the molecular director may be aligned in domains and there can be a distribution of defects all observable by BAM. This fact must be taken into account when interpreting LLSS autocorrelation functions. Since the grating technique is used with normal incidence, it is easy to make measurements with LLSS as a function of direction on the surface by simply rotating the grating. Experimental techniques and results will be discussed. We conclude that LLSS data is incomplete for monomolecular films unless BAM images of the footprint are also recorded. Two literature references to BAM images of nCB from our group follow.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Graham, B. T., et C. Price. « Extensions of spatiotemporal image correlation spectroscopy ». Dans 2015 41st Annual Northeast Biomedical Engineering Conference (NEBEC). IEEE, 2015. http://dx.doi.org/10.1109/nebec.2015.7117166.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wiseman, Paul W., Jeffrey A. Squier et Kent R. Wilson. « Dynamic image correlation spectroscopy (ICS) and two-color image cross-correlation spectroscopy (ICCS) : concepts and application ». Dans BiOS 2000 The International Symposium on Biomedical Optics, sous la direction de Jose-Angel Conchello, Carol J. Cogswell, Andrew G. Tescher et Tony Wilson. SPIE, 2000. http://dx.doi.org/10.1117/12.384193.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wiseman, Paul W., et Jeffrey A. Squier. « Measurement of cell surface protein dynamics by two-photon image correlation spectroscopy and image cross-correlation spectroscopy ». Dans High-Power Lasers and Applications, sous la direction de Glenn S. Edwards, Joseph Neev, Andreas Ostendorf et John C. Sutherland. SPIE, 2002. http://dx.doi.org/10.1117/12.461365.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wiseman, Paul W., et Jeffrey A. Squier. « Live cell studies of adhesion receptors by two-photon image correlation spectroscopy and image cross-correlation spectroscopy ». Dans International Symposium on Biomedical Optics, sous la direction de Ammasi Periasamy et Peter T. C. So. SPIE, 2002. http://dx.doi.org/10.1117/12.470675.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sarkar, Anirban, Irène Wang, Aditya Katti, Jörg Enderlein, Jacques Derouard et Antoine Delon. « Fluorescence speckle image correlation spectroscopy (Conference Presentation) ». Dans Unconventional Optical Imaging II, sous la direction de Corinne Fournier, Marc P. Georges et Gabriel Popescu. SPIE, 2020. http://dx.doi.org/10.1117/12.2558129.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Brown, R. G. W., et K. D. Ridley. « Miniature, Solid-State Photodetectors for Photon Correlation Spectroscopy and Laser Anemometry ». Dans Quantum-Limited Imaging and Image Processing. Washington, D.C. : Optica Publishing Group, 1986. http://dx.doi.org/10.1364/qlip.1986.mb4.

Texte intégral
Résumé :
The purpose of our investigations was to characterise cooled silicon avalanche photodiodes (APD) and assess their suitability as photon counting detectors for photon correlation laser anemometry and spectroscopy.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chen, Juntong, Wei Yin, Chao Zuo et Shijie Feng. « Fast 3D measurement method based on improved digital image correlation using grid-based feature extraction ». Dans Applied Industrial Spectroscopy. Washington, D.C. : OSA, 2021. http://dx.doi.org/10.1364/ais.2021.jth6a.27.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wiseman, Paul, et Benedict Hebert. « Mapping Protein Transport and Interactions with Nonlinear Image Correlation Spectroscopy ». Dans Frontiers in Optics. Washington, D.C. : OSA, 2005. http://dx.doi.org/10.1364/fio.2005.jmb5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie