Littérature scientifique sur le sujet « III-V nanostructure »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « III-V nanostructure ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "III-V nanostructure"

1

Florini, Nikoletta, George P. Dimitrakopulos, Joseph Kioseoglou, Nikos T. Pelekanos et Thomas Kehagias. « Strain field determination in III–V heteroepitaxy coupling finite elements with experimental and theoretical techniques at the nanoscale ». Journal of the Mechanical Behavior of Materials 26, no 1-2 (25 avril 2017) : 1–8. http://dx.doi.org/10.1515/jmbm-2017-0009.

Texte intégral
Résumé :
AbstractWe are briefly reviewing the current status of elastic strain field determination in III–V heteroepitaxial nanostructures, linking finite elements (FE) calculations with quantitative nanoscale imaging and atomistic calculation techniques. III–V semiconductor nanostructure systems of various dimensions are evaluated in terms of their importance in photonic and microelectronic devices. As elastic strain distribution inside nano-heterostructures has a significant impact on the alloy composition, and thus their electronic properties, it is important to accurately map its components both at the interface plane and along the growth direction. Therefore, we focus on the determination of the stress-strain fields in III–V heteroepitaxial nanostructures by experimental and theoretical methods with emphasis on the numerical FE method by means of anisotropic continuum elasticity (CE) approximation. Subsequently, we present our contribution to the field by coupling FE simulations on InAs quantum dots (QDs) grown on (211)B GaAs substrate, either uncapped or buried, and GaAs/AlGaAs core-shell nanowires (NWs) grown on (111) Si, with quantitative high-resolution transmission electron microscopy (HRTEM) methods and atomistic molecular dynamics (MD) calculations. Full determination of the elastic strain distribution can be exploited for band gap tailoring of the heterostructures by controlling the content of the active elements, and thus influence the emitted radiation.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ishikawa, Tomonori, Shigeru Kohmoto, Tetsuya Nishimura et Kiyoshi Asakawa. « In situ electron-beam processing for III–V semiconductor nanostructure fabrication ». Thin Solid Films 373, no 1-2 (septembre 2000) : 170–75. http://dx.doi.org/10.1016/s0040-6090(00)01128-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Babicheva, Viktoriia E. « Transition Metal Dichalcogenide Nanoantennas Lattice ». MRS Advances 4, no 41-42 (2019) : 2283–88. http://dx.doi.org/10.1557/adv.2019.357.

Texte intégral
Résumé :
ABSTRACTHigh-index materials such as silicon and III-V compounds have recently gained a lot of interest as a promising material platform for efficient photonic nanostructures. Because of the high refractive index, nanoparticles of such materials support Mie resonances and enable efficient light control and its confinement at the nanoscale. Here we propose a design of nanostructure with multipole resonances where optical nanoantennas are made out of transition metal dichalcogenide, in particular, tungsten disulfide WS2. Transition metal dichalcogenide (TMDCs) possess a high refractive index and strong optical anisotropy because of their layered structure and are promising building blocks for next-generation photonic devices. Strong anisotropic response results in different components of TMDC permittivity and the possibility of tailoring nanostructure optical properties by choosing different axes and adjusting dimensions in design. The proposed periodic array of TMDC nanoantennas can be used for controlling optical resonances in the visible and near-infrared spectral ranges and engineering efficient ultra-thin optical components with nanoscale light confinement.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Magno, R., et B. R. Bennett. « Nanostructure patterns written in III–V semiconductors by an atomic force microscope ». Applied Physics Letters 70, no 14 (7 avril 1997) : 1855–57. http://dx.doi.org/10.1063/1.118712.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kang, M., J. H. Wu, S. Huang, M. V. Warren, Y. Jiang, E. A. Robb et R. S. Goldman. « Universal mechanism for ion-induced nanostructure formation on III-V compound semiconductor surfaces ». Applied Physics Letters 101, no 8 (20 août 2012) : 082101. http://dx.doi.org/10.1063/1.4742863.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Boroditsky, M., I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, Chuan-Cheng Cheng, A. Scherer, R. Bhat et M. Krames. « Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes ». Journal of Applied Physics 87, no 7 (avril 2000) : 3497–504. http://dx.doi.org/10.1063/1.372372.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Abd-Elkader, Omar H., Abdullah M. Al-Enizi, Shoyebmohamad F. Shaikh, Mohd Ubaidullah, Mohamed O. Abdelkader et Nasser Y. Mostafa. « Enhancing the Liquefied Petroleum Gas Sensing Sensitivity of Mn-Ferrite with Vanadium Doping ». Processes 10, no 10 (5 octobre 2022) : 2012. http://dx.doi.org/10.3390/pr10102012.

Texte intégral
Résumé :
Mn-Ferrite with a nanostructure is a highly valuable material in various technological fields, such as electronics, catalysis, and sensors. The proposed article presents the hydrothermal synthesis of Mn-ferrite doped with V (V) ions. The range of the doping level was from 0.0 to x to 0.20. The fluctuation in tetrahedral and octahedral site occupancies with Fe (III), Mn (II), and V (V) ions was coupled to the variation in unit cell dimensions, saturation magnetization, and LPG sensing sensitivity. The total magnetic moment shows a slow decrease with V-doping up to x = 0.1 (Ms = 51.034 emu/g), then sharply decreases with x = 0.2 (Ms = 34.789 emu/g). The dimension of the unit cell increases as x goes up to x = 0.1, then lowers to x = 0.2. As the level of V (V) ion substitution increases, the microstrain (ε) also begins to rise. The ε of a pure MnFe2O4 sample is 3.4 × 10−5, whereas for MnFe2-1.67 xVxO4 (x = 0.2) it increases to 28.5 × 10−5. The differential in ionic sizes between V (V) and Fe (III) and the generation of cation vacancies contribute to the increase in ε. The latter is created when a V (V) ion replaces 1.6 Fe (III) ions. V-doped MnFe2O4 displays improved gas-sensing ability compared to MnFe2O4 at lower operating temperature. The maximum sensing efficiency was observed for 2 wt% V-doped MnFe2O4 at a 200 °C optimum operating temperature.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yuan, Xiaoming, Dong Pan, Yijin Zhou, Xutao Zhang, Kun Peng, Bijun Zhao, Mingtang Deng, Jun He, Hark Hoe Tan et Chennupati Jagadish. « Selective area epitaxy of III–V nanostructure arrays and networks : Growth, applications, and future directions ». Applied Physics Reviews 8, no 2 (juin 2021) : 021302. http://dx.doi.org/10.1063/5.0044706.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Cui, Jie, Masashi Ozeki et Masafumi Ohashi. « Dynamic behavior of group III and V organometallic sources and nanostructure fabrication by supersonic molecular beams ». Journal of Crystal Growth 209, no 2-3 (février 2000) : 492–98. http://dx.doi.org/10.1016/s0022-0248(99)00604-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Torres-Jaramillo, Santiago, Camilo Pulzara-Mora, Roberto Bernal-Correa, Miguel Venegas de la Cerda, Salvador Gallardo-Hernández, Máximo López-López et Álvaro Pulzara-Mora. « Structural and optical study of alternating layers of In and GaAs prepared by magnetron sputtering ». Universitas Scientiarum 24, no 3 (18 novembre 2019) : 523–42. http://dx.doi.org/10.11144/javeriana.sc24-3.saos.

Texte intégral
Résumé :
Currently, the obtention of nano-structures based on III-V materials is expensive. This calls for novel and inexpensive nanostructure manufacturing approaches. In this work we report on the manufacture of a nanostructures consisting of alternating layers of In and GaAs on a silicon substrate by magnetron sputtering. Furthermore, we characterized the produced nanostructures using secondary ion mass spectroscopy (SIMS), X-ray diffraction analysis, and Raman spectroscopy. SIMS revealed variation in the concentration of In atoms across In/GaAs/In interphases, and X-ray diffraction revealed planes corresponding to phases associated with GaAs and InAs due to In interfacial diffusion across GaAs layers. Finally, in order to study the composition and crystalquality of the manufactured nanostaructures, Raman spectra were taken using laser excitation lines of 452 nm, 532 nm, and 562 nm at different points across the nanostructures.This allowed to determine the transverse and longitudinal optical modes of GaAs and InAs,characteristic of a two-mode behavior. An acoustic longitudinal vibrational mode LA(Γ) of GaAs and an acoustic longitudinal mode activated by disorder (DALA) were observed. These resulted from the substitution of Ga atoms for In atoms in high concentrations due to the generation of Ga(VGa) and/or Arsenic(VAs) vacancies.This set of analyses show that magnetron sputtering can be aviable and relatively low-cost technique to obtain this type of semiconductors.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "III-V nanostructure"

1

Gallo, Pascal. « Nanostructure III-V pour l'électronique de spin ». Phd thesis, INSA de Toulouse, 2006. http://tel.archives-ouvertes.fr/tel-00134772.

Texte intégral
Résumé :
Parmi toutes les méthodes de confinement des porteurs dans les trois directions de l'espace, la croissance auto organisée de boîtes quantiques semble être la meilleure. La méthode de fabrication de ces nanostructures est l'épitaxie par jets moléculaires ; elle permet l'obtention de cristaux d'une grande qualité, de manière cohérente avec leur environnement. Cette technique d'auto organisation dite de Stranski Krastanov génère cependant des nanostructures de tailles diverses ; le spectre de leur luminescence s'en retrouve élargi, altérant les performances des composants à base de boîtes quantiques. Une solution consiste à localiser leur croissance en structurant à l'échelle nanométrique le substrat : lorsqu'elles sont régulièrement espacées, leur taille et leur géométrie sont plus homogènes. La technique employée, la nanoimpression, présente l'avantage majeur de ne pas altérer la cristallinité du substrat. Ces travaux mettent en exergue le fait que la luminescence des boîtes quantiques après reprise d'épitaxie sur ces surfaces nanostructurées par nanoimpression est intense. Les boîtes quantiques sont ici appliquées à un domaine en plein essor : l'électronique de spin. Le principe est d'utiliser le spin de l'électron pour coder l'information. Trois problèmes majeurs doivent être surmontés pour ce faire : l'injection de porteurs polarisés en spin dans le semiconducteur, le transport de ces porteurs polarisés, et enfin la recombinaison radiative, le cas échéant, pour émettre des photons polarisés avec un bon rendement. Dans cette thèse, nous présentons un composant qui permet de qualifier l'ensemble de ces paramètres, la spinLED. Les temps caractéristiques de relaxation de spin dans le semiconducteur sont courts, de l'ordre de 100ps ; il a été nécessaire d'adapter la structure de la spinLED pour la rendre compatible aux caractérisations en hyperfréquence, jusqu'à 20GHz.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Molière, Timothée. « Intégration de matériaux III-V sur silicium nanostructuré pour application photovoltaïque ». Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066638.

Texte intégral
Résumé :
Depuis plus de 30ans, les chercheurs essaient de combiner le silicium et le GaAs. Le potentiel de l'intégration du GaAs sur Si est en effet considérable pour le remplacement des substrats coûteux de GaAs ou de Ge dans la fabrication de cellules PV, de photodétecteurs, de LED, de lasers…. Il en est de même pour le développement de nouveaux dispositifs opto- et électroniques par l'intégration monolithique de GaAs sur circuit silicium. Des défis majeurs persistant jusqu'à aujourd'hui doivent toutefois être surmontés.Dans le but de surmonter ces difficultés, nous proposons un concept intéressant qui permet l'hétéroépitaxie de III-V sur Si. Ce concept est basé sur la technique d’épitaxie latérale (ELO) par CBE depuis des ouvertures nanométriques réalisées dans un masque de silice ultra-mince. Cette technique nous a permis d’obtenir des microcristaux de GaAs sans défaut et parfaitement intégrés sur Si grâce à une nucléation depuis des ouvertures de très petits diamètres qui évitent la génération de dislocations dues au désaccord de maille. Le concept étant validé, nous avons poursuivi l’étude en utilisant une 2ème approche de nanostructuration technologique du masque et permettant la localisation des cristaux. L’obtention in fine d’une pseudo-couche de GaAs sur Si sans défaut ni contrainte serait particulièrement utile pour les diverses applications mentionnées. Seront donc présentés le concept d’intégration, puis les résultats de croissance par ces techniques, et des analyses matériaux complémentaire. Pour finir, sera détaillée la structure d’une cellule PV de GaAs/Si devant permettre d’atteindre un rendement de conversion de 29,2%, ainsi que les premiers résultats obtenus
For over thirty years researchers have attempted to combine Si and GaAs. Alternative GaAs-on-Si substrates have a considerable market potential for replacing the costly GaAs or Ge substrate in producing traditional GaAs devices such as solar cells, photodetectors, LEDS, lasers, and microwave devices, and as a new technology for monolithic integration of GaAs elements and silicon integrated circuits. However, major challenges remaining until now must be overcome.In that way, we propose an interesting concept that allows III-V heteroepitaxy on silicon. This concept is based on the Epitaxial Lateral Overgrowth (ELO) by CBE from nanoscale holes through an ultra-thin silica layer. This technique allows us to obtain GaAs microcrystals without any defect and perfectly integrated on Si thanks to nanoscaled nucleation seeds which prevent dislocation generation due to lattice mismatch. The concept being validated, the study has continued using a 2nd approach of nanostructuration to allow crystal localization. The achievement of getting a GaAs pseudo-layer on silicon substrate without any defect or stain would be of great interest for the formerly mentioned applications.So the integration concept of III-V materials on silicon will be introduced, then growth resultants by these techniques, and material characterizations in order to qualify the integrated GaAs on silicon regarding to the opto- and electronic applications. Finally, the structure of a GaAs/Si tandem solar cell will be discussed. After proving this solar cell could reach a 29.2% conversion efficiency, first achievements will be revealed
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zhang, Tiantian. « Injection de spin dans des systèmes à base de semiconducteurs III-V en vue de nouveaux composants spintroniques ». Thesis, Toulouse, INSA, 2014. http://www.theses.fr/2014ISAT0005/document.

Texte intégral
Résumé :
La spintronique dans les semiconducteurs vise à utiliser le spin de l’électron comme degré de liberté supplémentaire (en plus de la charge électrique) afin de véhiculer l’information, ce qui permettrait la mise au point de composants intégrant de nouvelles fonctionnalités. Ce travail de thèse porte sur deux étapes importantes qui doivent être maîtrisées : l’injection électrique de porteurs polarisés en spin dans les semiconducteurs III-V, et la manipulation du spin de l’électron (par champ magnétique) dans ces matériaux optimisés. Dans un premier temps, la grande efficacité des injecteurs de spin à base de CoFeB/MgO/GaAs est démontrée dans des dispositifs de type Diodes Electroluminescentes polarisées en spin (SpinLEDs). La comparaison entre des injecteurs comprenant une barrière tunnel fabriquée soit par pulvérisation cathodique, soit par épitaxie par jets moléculaires (MBE), permet de montrer que ces deux techniques donnent des résultats comparables. Dans les deux cas, l’efficacité de l’injection est améliorée par un recuit de l’échantillon autour de 300−350◦C. Le recuit induit une amélioration de la qualité de l’interface CoFeB/MgO. De plus, l’efficacité de l’injection de spin n’est stable en fonction du courant injecté que lorsque la barrière tunnel est fabriquée par pulvérisation cathodique. Ceci est dˆu aux caractéristiques de l’interface MgO/GaAs qui diffèrent selon la technique de croissance de la barrière. Dans un deuxième temps, l’injection de spin en l’absence de champ magnétique externe appliqué est réaliséegrâce à un nouveau type d’injecteur constitué d’une électrode de CoFeB ultrafine présentant une aimantation rémanente de la couche le long de l’axe de croissance de l’échantillon. Pour la première fois des taux de polarisation circulaire de l’électroluminescence de l’ordre de 20% sont mesurés à 25 K à champ magnétique nul. Ensuite, la problématique de la relaxation de spin des porteurs injectés dans les vallées L de haute énergie dans GaAs (phénomène non négligeable sous injection électrique) est également traitée. Nous observons qu’une fraction de la mémoire du spin photogénéré en L est conservée lorsque les électrons sont diffusés vers la vallée Γ, malgré une relaxation d’énergie de plusieurs centaines de meV. Le temps de relaxation de spin dans les vallées L est estimé autour de 200 fs. Enfin, nous avons exploré le matériau GaAsBi dilué (x ∼ 2.2%) dont la perturbation de la matrice par l’élément Bi permet d’attendre des propriétés électroniques et de spin fortement modifiées. Des mesures de photoluminescence ont mis en évidence une diminution de l’énergie de bande interdite de l’ordre de 85meV/%Bi. De plus, par la mesure directe des battements quantiques de la polarisation de photoluminescence nous avons déterminé un facteur de Landé des électrons de conduction de l’ordre de deux fois supérieur à celui de GaAs. Ces résultats témoignent de la forte perturbation des états de valences et de l’augmentation de l’interaction spin-orbite
Spintronics of semiconductors aims at using carrier spins as supplementary means of information transport. Thiswould lead to components showing extended functionalities. This thesis work is dedicated to the study of injectionand manipulation of electron spin in semiconductors, which are the basis of any spintronic application. In a first stepwe demonstrate the high efficiency of CoFeB/MgO/GaAs - based spin injectors. Circular polarization degrees of electroluminescence over 20% are measured on spin polarized LEDs (SpinLEDs) at 0.8 T and 25 K. Comparison betweensputtering- and MBE- grown spin injectors has shown similar results. In both case, spin injection efficiency is increasedby thermal annealing of the sample, in the range 300 − 350◦C. Indeed, annealing improves the quality of CoFeB/MgOinterface, and induces the crystallization of CoFeB above 300◦C. A higher stability of spin injection with current injectionis found when the tunnel barrier is grown by sputtering. This is due to the MgO/GaAs interface characteristicswhich is related to the growth technique. In a second step, we demonstrate spin injection without external appliedmagnetic field, through an ultra-thin (a few atomic layers) CoFeB electrode, taking advantage of the perpendicular magnetic anisotropy of the layer which leads to a remanant magnetization along the growth axis. For the first time in this configuration, circular polarization degrees of electroluminescence of about 20% are measured at 25 K at zero magnetic field. In a third step, due to the crucial role it may play in electrical injection, electron spin dynamics in high energy L-valleys is investigated. Using polarization resolved excitation photoluminescence in the range 2.8-3.4 eV, we observe that a fraction of photogenerated spin polarization is preserved when electrons are scattered hundreds of meV down to Γ valley. Spin relaxation time in L valleys is estimated to 200 fs. Finally we investigate electron and spin properties of GaAsBi dilute bismide alloy. We observe that the bandgap energy is reduced by 85meV/%Bi when Bi element is introduced into GaAs matrix. Moreover, the electron Land´e factor is about twice the one in GaAs for a 2.2% Bi composition. These features are evidence of the strong perturbation of host states and spin-orbit interaction enhancement
Styles APA, Harvard, Vancouver, ISO, etc.
4

Verzelen, Olivier. « Interaction électron-phonon LO dans les boîtes quantiques d'InAs/GaAs ». Paris 6, 2002. http://www.theses.fr/2002PA066365.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

SCACCABAROZZI, ANDREA. « GaAs/AlGaAs quantum dot intermediate band solar cells ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/40117.

Texte intégral
Résumé :
This thesis presents my Ph.D. work about quantum dot GaAs/AlGaAs solar cells grown by droplet epitaxy, exploring the potential of this materials system for the realization of intermediate band photovoltaic devices. In the first chapter a general introduction to the field of solar energy is given, outlining the reasons why this research has been performed. The physics of the photovoltaic cell is briefly explained in its most important points, to give the reader clear understanding of what is presented in the following chapters. Intermediate band devices are presented in the second chapter. The theoretical foundations presented do not aim at constituting an exhaustive explanation of the theory underlying intermediate band solar cells, but the scope is again to give clear understanding of the characterization of the quantum dot devices reported in the following chapters. A survey of the state of the art in the field is given, pointing out the differences with our technology. The initial part of my Ph.D. work was spent in developing the technology to design and grow (Al)GaAs photovoltaic devices, as well as the characterization techniques required to understand the behavior of such devices. In chapter 3 the method developed to design the solar cell structure is illustrated, and in chapter 5 the experimental setup used for characterization is presented, along with the measurements on the single junction devices realized during this work. Chapter 4 is dedicated to the description of the growth and fabrication methods used to grow the samples reported here. The development of the fabrication technology proceeded in close contact with the characterizations of the devices, in order to optimize the process. Finally in chapter 6 the results on quantum dot photovoltaic cells are reported: the key working principles of intermediate band devices have been demonstrated with our materials system, and this, to the knowledge of the author, is the first time that strain free quantum dot solar cells are reported of intermediate band behavior. The role of defects in the AlGaAs matrix is explained in connection with both the optical and electrical characterizations presented.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Grange, Thomas. « Relaxation et décohérence des polarons dans les boîtes quantiques de semi-conducteurs ». Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00333256.

Texte intégral
Résumé :
Cette thèse présente une étude théorique des interactions électron-phonon dans les boîtes quantiques InAs/GaAs, où le régime de couplage fort entre les porteurs confinés dans les boîtes et les phonons optiques a pour conséquence la formation d'états intriqués appelés polarons.
Nous prenons tout d'abord en compte le couplage fort entre excitons et phonons optiques afin de calculer l'absorption interbande sous champ magnétique.
Nous calculons ensuite le temps de vie des états polarons, dont l'instabilité est due à leur composante phonon. Nous démontrons la nécessité de prendre en compte de manière détaillée les différents processus anharmoniques, dont l'efficacité dépend fortement de l'énergie du polaron. Ces calculs permettent d'expliquer les variations non monotones du temps de vie mesuré des polarons avec leur énergie.
Nous étudions ensuite la dynamique de relaxation dans les boîtes doublement chargées, où l'interaction spin-orbite, associée aux couplages électron-phonon, entraîne des processus de retournement du spin entre états singulets et triplets.
Finalement, nous étudions la cohérence optique de la transition intrabande fondamentale, dont l'élargissement avec la température est dû aux transitions réelles et virtuelles vers le deuxième état excité.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jaffal, Ali. « Single photon sources emitting in the telecom band based on III-V nanowires monolithically grown on silicon ». Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI019.

Texte intégral
Résumé :
Une source de photons uniques (SPU) dans la bande télécom, épitaxiées sur un substrat de silicium (Si), est le Saint Graal pour réaliser des dispositifs CMOS compatibles pour les technologies de l'information optiques. Pour atteindre cet objectif, nous proposons la croissance monolithique de Boîte Quantiques-Nanofils (BQ-NFs) InAs/InP sur des substrats de silicium par épitaxie par jet moléculaire (EJM) en utilisant la méthode vapeur-liquide-solide (VLS). Au début, nous avons concentré nos efforts sur l'optimisation des conditions de croissance afin d'obtenir une densité de NF ultra-faible sans effort avant ou après la croissance, ce qui nous permet d'exciter optiquement un seul BQ-NF sur l'échantillon tel qu'il a été épitaxiées et de préserver la croissance monolithique sur le silicium. Par la suite, nous avons porté notre attention sur l'amélioration de l'extraction de la lumière de la BQ InAs du guide d'onde InP NF vers l'espace libre pour obtenir une source lumineuse avec un profil d'émission en Champ Lointain (CL) gaussien afin de coupler efficacement les photons individuels à une fibre optique monomode. Cela a été réalisé en contrôlant la géométrie de NF pour obtenir des NFs en forme d'aiguille avec un très petit angle de conicité et un diamètre de NF adapté pour supporter un guide d'onde monomode. Une telle géométrie a été produite avec succès en utilisant un équilibre induit par la température sur les croissances axiale et radiale pendant la croissance des NFs catalysée par l'or. Des mesures optiques ont confirmé la nature mono-photonique des photons émis avec g2(0) = 0,05 et un profil d'émission gaussien en CL avec un angle d'émission θ = 30°. Pour obtenir des performances optimales, nous avons ensuite abordé une question cruciale dans cette géométrie de NF représentée par l'état de polarisation inconnu des photons émis. Pour résoudre ce problème, une solution consiste à intégrer un seul BQ dans un NF avec une section asymétrique optimisée pour inhiber un état de polarisation et améliorer l'efficacité d'émission de l'autre. Une stratégie de croissance originale a été proposée, permettant d'obtenir des photons à haut degré de polarisation linéaire parallèle à l'axe allongé des NFs asymétriques. Enfin, l'encapsulation des BQ-NFs dans des guides d'ondes en silicium amorphe (a-Si) a ouvert la voie à la production des dispositifs des SPU entièrement intégrés sur Si dans un avenir proche
A telecom band single photon source (SPS) monolithically grown on silicon (Si) substrate is the Holy Grail to realize CMOS compatible devices for optical-based information technologies. To reach this goal, we propose the monolithic growth of InAs/InP quantum dot-nanowires (QD-NWs) on silicon substrates by molecular beam epitaxy (MBE) using the vapour-liquid-solid (VLS) method. In the beginning, we have focused our efforts on optimizing the growth conditions aiming at achieving ultra-low NWs density without any pre-growth or post-growth efforts allowing us to optically excite a single QD-NW on the as-grown sample and to preserve the monolithic growth on silicon. Subsequently, we have turned our attention on enhancing the InAs QD light extraction from the InP NW waveguide towards the free space to achieve a bright source with a Gaussian far-field (FF) emission profile to efficiently couple the single photons to a single-mode optical fiber. This was done by controlling the NW geometry to obtain needlelike-tapered NWs with a very small taper angle and a NW diameter tailored to support a single mode waveguide. Such a geometry was successfully produced using a temperature-induced balance over axial and radial growths during the gold-catalyzed growth of the NWs. Optical measurements have confirmed the single photon nature of the emitted photons with g2(0) = 0.05 and a Gaussian FF emission profile with an emission angle θ = 30°. For optimal device performances, we have then tackled a crucial issue in such NW geometry represented by the unknown polarization state of the emitted photons. To solve this issue, one solution is to embed a single QD in a NW with an asymmetrical cross-section optimized to inhibit one polarization state and to improve the emission efficiency of the other one. An original growth strategy was proposed permitting us to obtain highly linearly polarized photons along the elongated axis of the asymmetrical NWs. Finally, the encapsulation of the QD-NWs within amorphous silicon (a-Si) waveguides have opened the path to produce fully integrated SPSs devices on Si in the near future
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gallo, Pascal. « Nanostructures III-V pour l'électronique de spin ». Toulouse, INSA, 2006. http://eprint.insa-toulouse.fr/archive/00000156/.

Texte intégral
Résumé :
Parmi toutes les méthodes de confinement des porteurs dans les trois directions de l’espace, la croissance auto organisée de boîtes quantiques semble être la meilleure. La méthode de fabrication de ces nanostructures est l’épitaxie par jets moléculaires ; elle permet l’obtention de cristaux d’une grande qualité, de manière cohérente avec leur environnement. Cette technique d’auto organisation dite de Stranski Krastanov génère cependant des nanostructures de tailles diverses ; le spectre de leur luminescence s’en retrouve élargi, altérant les performances des composants à base de boîtes quantiques. Une solution consiste à localiser leur croissance en structurant à l’échelle nanométrique le substrat : lorsqu’elles sont régulièrement espacées, leur taille et leur géométrie sont plus homogènes. La technique employée, la nanoimpression, présente l’avantage majeur de ne pas altérer la cristallinité du substrat. Ces travaux mettent en exergue le fait que la luminescence des boîtes quantiques après reprise d’épitaxie sur ces surfaces nanostructurées par nanoimpression est intense. Les boîtes quantiques sont ici appliquées à un domaine en plein essor : l’électronique de spin. Le principe est d’utiliser le spin de l’électron pour coder l’information. Trois problèmes majeurs doivent être surmontés pour ce faire : l’injection de porteurs polarisés en spin dans le semiconducteur, le transport de ces porteurs polarisés, et enfin la recombinaison radiative, le cas échéant, pour émettre des photons polarisés avec un bon rendement. Dans cette thèse, nous présentons un composant qui permet de qualifier l’ensemble de ces paramètres, la spinLED. Les temps caractéristiques de relaxation de spin dans le semiconducteur sont courts, de l’ordre de 100ps ; il a été nécessaire d’adapter la structure de la spinLED pour la rendre compatible aux caractérisations en hyperfréquence, jusqu’à 20GHz
Self-organised growth of quantum dots seems to be one of the best methods to obtain nanostructures able to confine carriers in the three directions of space. Growth is performed by molecular beam epitaxy; this technique provides high quality crystals, coherently with their environment. However, its major drawback is that it generates randomly sized structures, which is detrimental for device applications. A solution to this odd is to pattern the substrate in order to create regularly spaced nucleation sites for the quantum dots. The technique employed to do so is nanoimprint, which prevents from creating non radiative recombination centers in the substrate. This work shows state of the art results of luminescence from nanoimprinted regrown structures. Quantum dots are here applied to spintronics, which principle is to use the spin of the carriers as a support of quantum information. Three major obstacles have to be overcome in this field; first, polarized carriers have to be injected in the semiconductor; second, the polarized carriers have to be transported through the material; finally, the carriers may recombine, providing polarized photons. In this thesis, we design a device that allows characterizing all these parameters: the spinLED. Quantum dots allow a particularly good efficiency in the conversion of polarized carriers into polarized photons. As the spin relaxation times of the carriers are short, about 100ps, it was necessary to adapt the spinLED structure to make it compatible with hyperfrequency measurements
Styles APA, Harvard, Vancouver, ISO, etc.
9

Benallali, Hammouda. « Étude de nanostructures de semiconducteurs II-VI par sonde atomique tomographique ». Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4324.

Texte intégral
Résumé :
Les nanostructures de semiconducteurs II-VI ont de nombreuses applications en microélectronique, optoélectronique et photonique. Notamment, les boites quantiques II-V peuvent servir de source de photons uniques. Dans cette étude, nous nous sommes intéressés à la caractérisation chimique et structurale des nanostructures de semiconducteurs II-VI (boites quantiques (BQs) auto-organisées, nanofils II-VI et III-V …) par sonde atomique tomographique (SAT). Dans un premier temps, nous avons optimisé les conditions d’analyse des semiconducteurs III-V et II-VI par SAT. Ensuite, nous avons étudié les compositions chimiques des interfaces II-VI/III-V en montrant la formation d’un composé Ga2.7Se3 à l’interface ZnSe/GaAs et un mélange de cations (Ga, Zn) à l’interface ZnTe/InAs. Les mesures de compositions chimiques et des tailles des boites quantiques en trois dimensions par SAT ont permis de faire une corrélation avec les mesures optiques. Nous nous sommes aussi intéressés à l’étude des mécanismes de croissance des nanofils GaAs et ZnTe ainsi que des BQs (CdTe) insérés dans des nanofils ZnTe en analysant la composition chimique des catalyseurs, les BQs dans les nanofils aussi que la base des nanofils. Ces mesures montrent que les boites quantiques sont formées d’un fort mélange CdxZn1-xTe. Un scénario basé sur la diffusion de surface a été proposé pour expliquer la croissance ainsi que le mélange entre Zn/Cd pour les BQs insérées dans les nanofils
Nanostructures of II-VI nanostructure have many applications in microelectronics, optoelectronics and photonics. For example, II -V quantum dots have shown the ability to be a source of single photons. In this work, we performed in the chemical and structural characterization of nanostructures of II-VI semiconductors (self- organized quantum dots (QDs), nanowires II-VI and III- V ...) by atom probe tomography (APT). Firstly, the analysis conditions of III-V and II- VI semiconductors by APT were optimized. Then, we studied the chemical composition of II-VI/III-V interfaces and showed the formation of a Ga2.7Se3 compound at the ZnSe/GaAs interface and the (Ga, Zn) cations mixing at the ZnTe/InAs interface. The measurements of the chemical composition and the sizes of quantum dots in three dimensions by APT allowed making a correlation with optical measurements. We studied also growth mechanisms of GaAs, ZnTe nanowire and the CdTe QDs inserted in ZnTe nanowires by analyzing the chemical composition of the catalysts QDs and nanowires basis. These measurements show that the quantum dots are formed of a strong mixing of CdxZn1-xTe. A scenario based on surface diffusion has been proposed to explain the growth and the mixing between Zn/Cd for the QDs
Styles APA, Harvard, Vancouver, ISO, etc.
10

Grant, Victoria Anne. « Growth and characterisation of III-V semiconductor nanostructures ». Thesis, University of Nottingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490983.

Texte intégral
Résumé :
This thesis describes the growth and characterisation of III-V semiconductor materials and nanostructures. The material was grown by molecular beam epitaxy (MBE) and characterised using a range of techniques including atomic force microscopy (AFM), cross-sectional scanning tunnelling microscopy (XSTM) and x-ray diffraction (XRD).
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "III-V nanostructure"

1

Li, Jing, et Xiao-Ying Huang. Nanostructured crystals : An unprecedented class of hybrid semiconductors exhibiting structure-induced quantum confinement effect and systematically tunable properties. Sous la direction de A. V. Narlikar et Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.16.

Texte intégral
Résumé :
This article describes the structure-induced quantum confinement effect in nanostructured crystals, a unique class of hybrid semiconductors that incorporate organic and inorganic components into a single-crystal lattice via covalent (coordinative) bonds to form extended one-, two- and three-dimensional network structures. These structures are comprised of subnanometer-sized II-VI semiconductor segments (inorganic component) and amine molecules (organic component) arranged into perfectly ordered arrays. The article first provides an overview of II-VI and III-V semiconductors, II-VI colloidal quantum dots, inorganic-organic hybrid materials before discussing the design and synthesis of I-VI-based inorganic-organic hybrid nanostructures. It also considers the crystal structures, quantum confinement effect, bandgaps, and optical properties, thermal properties, thermal expansion behavior of nanostructured crystals.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Vvedensky, Dimitri D. Quantum dots : Self-organized and self-limiting assembly. Sous la direction de A. V. Narlikar et Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.6.

Texte intégral
Résumé :
This article describes the self-organized and self-limiting assembly of quantum dots, with particular emphasis on III–V semiconductor quantum dots. It begins with a background on the second industrial revolution, highlighted by advances in information technology and which paved the way for the era of ‘quantum nanostructures’. It then considers the science and technology of quantum dots, followed by a discussion on methods of epitaxial growth and fabrication methodologies of semiconductor quantum dots and other supported nanostructures, including molecular beam epitaxy and metalorganic vapor-phase epitaxy. It also examines self-organization in Stranski–Krastanov systems, site control of quantum dots on patterned substrates, nanophotonics with quantum dots, and arrays of quantum dots.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Glazov, M. M. Hyperfine Interaction of Electron and Nuclear Spins. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0004.

Texte intégral
Résumé :
This chapter discusses the key interaction–hyperfine coupling–which underlies most of phenomena in the field of electron and nuclear spin dynamics. This interaction originates from magnetic interaction between the nuclear and electron spins. For conduction band electrons in III–V or II–VI semiconductors, it is reduced to a Fermi contact interaction whose strength is proportional to the probability of finding an electron at the nucleus. A more complex situation is realized for valence band holes where hole Bloch functions vanish at the nuclei. Here the hyperfine interaction is of the dipole–dipole type. The modification of the hyperfine coupling Hamiltonian in nanosystems is also analyzed. The chapter contains also an overview of experimental data aimed at determination of the hyperfine interaction parameters in semiconductors and semiconductor nanostructures.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "III-V nanostructure"

1

Yip, Sen Po, Lifan Shen, Edwin Y. B. Pun et Johnny C. Ho. « Properties Engineering of III–V Nanowires for Electronic Application ». Dans Nanostructure Science and Technology, 53–82. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2367-6_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pohl, Udo W., Sven Rodt et Axel Hoffmann. « Optical Properties of III–V Quantum Dots ». Dans Semiconductor Nanostructures, 269–99. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dubrovskii, Vladimir. « Crystal Structure of III–V Nanowires ». Dans Nucleation Theory and Growth of Nanostructures, 499–571. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39660-1_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tiginyanu, I. M., C. Schwab, A. Sarua, G. Irmer, J. Monecke, I. Kravetsky, J. Sigmund et H. L. Hartnagel. « Optical Characteristics of Nanostructured III-V Compounds ». Dans Frontiers of Nano-Optoelectronic Systems, 393–403. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0890-7_26.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tomioka, Katsuhiro, et Takashi Fukui. « III–V Semiconductor Nanowires on Si by Selective-Area Metal-Organic Vapor Phase Epitaxy ». Dans Semiconductor Nanostructures for Optoelectronic Devices, 67–101. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22480-5_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Joyce, B. A., T. Shitara, J. H. Neave, R. N. Fawcett et T. Kaneko. « Site-Specific Processes During MBE and MOMBE Growth of III–V Compounds on Singular and Vicinal Surfaces ». Dans Nanostructures and Quantum Effects, 261–75. Berlin, Heidelberg : Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79232-8_38.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Höfling, C., C. Schneider et A. Forchel. « 6.9 Examples of III-V layers and nanostructures with diluted semiconductor materials ». Dans Growth and Structuring, 182–92. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-68357-5_35.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Launois, H., D. Mailly, Y. Jin, F. Pardo, A. Izrael, J. Y. Marzin et B. Sermage. « Fabrication and Quantum Properties of 1D and 0D Nanostructures in III-V Semiconductors ». Dans Science and Engineering of One- and Zero-Dimensional Semiconductors, 17–24. Boston, MA : Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5733-9_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Morgenstern, Markus, Jens Wiebe, Felix Marczinowski et Roland Wiesendanger. « Scanning Tunneling Spectroscopy on III–V Materials : Effects of Dimensionality, Magnetic Field, and Magnetic Impurities ». Dans Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals, 217–43. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10553-1_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Dasika, Vaishno D., et Rachel S. Goldman. « STM OF SELF ASSEMBLED III–V NANOSTRUCTURES ». Dans Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization, 369–406. World Scientific Publishing Company, 2011. http://dx.doi.org/10.1142/9789814322843_0009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "III-V nanostructure"

1

Fu, L., H. F. Lu, J. Lee, Z. Li, S. Turner, P. Parkinson, S. Breuer et al. « Nanostructure photovoltaics based on III-V compound semiconductors ». Dans Advanced Optoelectronics for Energy and Environment. Washington, D.C. : OSA, 2013. http://dx.doi.org/10.1364/aoee.2013.asa4a.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Liang, Dong, Yangsen Kang, Yijie Huo, Ken Xinze Wang, Anjia Gu, Meiyueh Tan, Zongfu Yu et al. « GaAs thin film nanostructure arrays for III-V solar cell applications ». Dans SPIE OPTO, sous la direction de Ali Adibi, Shawn-Yu Lin et Axel Scherer. SPIE, 2012. http://dx.doi.org/10.1117/12.909743.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

HEUKEN, M. « NANOSTRUCTURE GROWTH OF III-V COMPOUND SEMICONDUCTOR IN ADVANCED PLANETARY REACTORS® ». Dans Reviews and Short Notes to Nanomeeting '99. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817990_0058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cossio, Gabriel, Andre Wibowo, Sudersena Rao Tatavarti, Kimberly Sablon et Edward T. Yu. « Large Area Nanostructure Integration for Broad-Spectrum, Omnidirectional Antireflection Improvements on Polymer Packaged, Mechanically Flexible, Epitaxial Lift-off III-V Solar Arrays ». Dans 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8548006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Cossio, Gabriel, Jihwan Lee, Gautham Ragunathan, Andre Wibowo, Sudersena Rao Tatavarti, Kimberly Sablon et Edward T. Yu. « Large Area Nanostructure Integration for Broad-Spectrum, Omnidirectional Antireflection Improvements on Polymer Packaged, Mechanically Flexible, Epitaxial Lift-Off III-V Solar Cells ». Dans 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC). IEEE, 2017. http://dx.doi.org/10.1109/pvsc.2017.8366676.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

O’Neil, Chad B., Ajay P. Malshe, Kumar Virwani et William F. Schmidt. « Design Consideration, Process and Mechanical Modeling, and Tolerance Analysis of MEMS-Based Mechanical System-on-a-Chip (SOAC) for Nanomanufacturing ». Dans ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39381.

Texte intégral
Résumé :
In this paper the authors describe the design considerations including force and tolerance analysis and mechanism and tip design, for a novel, dynamic scanning probe microscopy tip directly insertable into today’s existing atomic force microscopy tools. This tool is the first of its kind and is a major step in the field of nanomanufacturing enabling the use of nanomechanical machining operations for nanostructure top-down manufacturing. The application of this device is the nanomechanical drilling and milling of III-V semiconductor substrates for various applications such as nanovias for electrical interconnection of next generation electronic and photonic applications, as well as reservoirs and capillaries for nano-fluidics. Results to date indicate that device performance parameters allow a normal drilling force of 25 μN, tangential drilling force of 35 μN, maximum rotational speed of 100,000 rpm, and minimum machined feature size of less than 200 nm. This device is currently being fabricated at Sandia National Laboratories, SUMMIT MEMS foundry and being packaged at the University of Arkansas, Fayetteville High Density Electronics Center (HiDEC).
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fukui, Takashi, Eiji Nakai, MuYi Chen et Katsuhiro Tomioka. « III-V Compound Semiconductor Nanowire Solar Cells ». Dans Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C. : OSA, 2014. http://dx.doi.org/10.1364/pv.2014.pw3c.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vyas, Kaustubh, et Ksenia Dolgaleva. « Challenges associated with fabrication of III-V integrated optical nanostructures for nonlinear optics ». Dans Nonlinear Photonics. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/np.2022.npth2f.3.

Texte intégral
Résumé :
III-V semiconductors are elements formed using the group III and group V of the periodic table. These materials are known for their large nonlinear properties. Fabrication of integrated photonic components using these materials is rather challenging. In this work, we outline the various fabrication challenges for making nonlinear nanostructures using III-V alloys..
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wu, Jiang, Yunyan Zhang, Frank Tutu, Phu Lam, Sabina Hatch et Huiyun Liu. « High-efficient solar cells with III-V nanostructures ». Dans Optics for Solar Energy. Washington, D.C. : OSA, 2013. http://dx.doi.org/10.1364/ose.2013.rm1d.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hasegawa, Hideki, et Seiya Kasai. « Sensing terahertz signals with III-V quantum nanostructures ». Dans Integrated Optoelectronics Devices, sous la direction de Manijeh Razeghi et Gail J. Brown. SPIE, 2003. http://dx.doi.org/10.1117/12.479611.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "III-V nanostructure"

1

Hubbard, Seth. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application. Office of Scientific and Technical Information (OSTI), septembre 2012. http://dx.doi.org/10.2172/1052851.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie