Littérature scientifique sur le sujet « Identity-utility extraction »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Identity-utility extraction ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Identity-utility extraction"
Sturza, Julie. « A Review and Meta-Analysis of Utility Values for Lung Cancer ». Medical Decision Making 30, no 6 (6 mai 2010) : 685–93. http://dx.doi.org/10.1177/0272989x10369004.
Texte intégralMacKay, Evelyn E., Alycia P. Fratzke, Richard W. Gerhold, Brian F. Porter et Kevin E. Washburn. « Cerebrospinal nematodosis caused by Parelaphostrongylus species in an adult bull ». Journal of Veterinary Diagnostic Investigation 32, no 3 (3 avril 2020) : 486–89. http://dx.doi.org/10.1177/1040638720915530.
Texte intégralLiu, Yufei, Yanhui Xiao et Huawei Tian. « Plug-and-Play PRNU Enhancement Algorithm with Guided Filtering ». Sensors 24, no 23 (2 décembre 2024) : 7701. https://doi.org/10.3390/s24237701.
Texte intégralMohd Rahim, Syarifah, Rosni Ibrahim, Tengku Zetty Tengku Jamaluddin, Fairuz Amran, Norhayati Omar et Siti Norbaya Masri. « Molecular Identification of Fungi Causing Tissue Mycoses From Formalin Fixed Paraffin Embedded (FFPE) Archive Specimens ». LABORATORY R_T 18, s21 (12 décembre 2022) : 80–86. http://dx.doi.org/10.47836/mjmhs.18.s21.13.
Texte intégralZimmerman, Jacquelyn W., Genevieve Stein-O'Brien, Richard A. Burkhart, Elana J. Fertig et Elizabeth M. Jaffee. « Abstract PO-080 : Patient-derived organoids and cancer associated fibroblasts as a co-culture model to explore cell type interactions in pancreatic cancer ». Cancer Research 81, no 22_Supplement (15 novembre 2021) : PO—080—PO—080. http://dx.doi.org/10.1158/1538-7445.panca21-po-080.
Texte intégralSeu, Katie, Laurel Romano, Athina Ntoumaziou, Maria Stewart, Jason C. Gardner, Robert Paulson, Yi Zheng et al. « Heterogeneity of the Erythromyeloblastic Island (EMBI) Niche during Baseline and Stress Erythropoiesis ». Blood 144, Supplement 1 (5 novembre 2024) : 163. https://doi.org/10.1182/blood-2024-212042.
Texte intégralPlank, Laurin, et Armin Zlomuzica. « Reduced speech coherence in psychosis-related social media forum posts ». Schizophrenia 10, no 1 (4 juillet 2024). http://dx.doi.org/10.1038/s41537-024-00481-1.
Texte intégralRew, David Anthony, Alan Arthur Hales, David Cable, Keith Burrill et Adrian C. Bateman. « New life for old cellular pathology : a transformational approach to the upcycling of historic e-pathology records for contemporary clinical uses ». Journal of Clinical Pathology, 16 février 2021, jclinpath—2021–207385. http://dx.doi.org/10.1136/jclinpath-2021-207385.
Texte intégralPham, Christine N., Shayna D. Cunningham et Debbie L. Humphries. « Action learning and public health pedagogy : Student reflections from an experiential public health course ». Frontiers in Public Health 11 (28 mars 2023). http://dx.doi.org/10.3389/fpubh.2023.1128705.
Texte intégralChoi, Sungyu, Doeun Son, Martin I. Chilvers, Hyun-Jun Kim et Hyunkyu Sang. « First report of Diaporthe eres causing leaf spot disease on Machilus thunbergii in Korea ». Plant Disease, 21 septembre 2022. http://dx.doi.org/10.1094/pdis-05-22-1243-pdn.
Texte intégralThèses sur le sujet "Identity-utility extraction"
Li, Huiyu. « Exfiltration et anonymisation d'images médicales à l'aide de modèles génératifs ». Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4041.
Texte intégralThis thesis aims to address some specific safety and privacy issues when dealing with sensitive medical images within data lakes. This is done by first exploring potential data leakage when exporting machine learning models and then by developing an anonymization approach that protects data privacy.Chapter 2 presents a novel data exfiltration attack, termed Data Exfiltration by Compression (DEC), which leverages image compression techniques to exploit vulnerabilities in the model exporting process. This attack is performed when exporting a trained network from a remote data lake, and is applicable independently of the considered image processing task. By exploring both lossless and lossy compression methods, this chapter demonstrates how DEC can effectively be used to steal medical images and reconstruct them with high fidelity, using two public CT and MR datasets. This chapter also explores mitigation measures that a data owner can implement to prevent the attack. It first investigates the application of differential privacy measures, such as Gaussian noise addition, to mitigate this attack, and explores how attackers can create attacks resilient to differential privacy. Finally, an alternative model export strategy is proposed which involves model fine-tuning and code verification.Chapter 3 introduces the Generative Medical Image Anonymization framework, a novel approach to balance the trade-off between preserving patient privacy while maintaining the utility of the generated images to solve downstream tasks. The framework separates the anonymization process into two key stages: first, it extracts identity and utility-related features from medical images using specially trained encoders; then, it optimizes the latent code to achieve the desired trade-off between anonymity and utility. We employ identity and utility encoders to verify patient identities and detect pathologies, and use a generative adversarial network-based auto-encoder to create realistic synthetic images from the latent space. During optimization, we incorporate these encoders into novel loss functions to produce images that remove identity-related features while maintaining their utility to solve a classification problem. The effectiveness of this approach is demonstrated through extensive experiments on the MIMIC-CXR chest X-ray dataset, where the generated images successfully support lung pathology detection.Chapter 4 builds upon the work from Chapter 4 by utilizing generative adversarial networks (GANs) to create a more robust and scalable anonymization solution. The framework is structured into two distinct stages: first, we develop a streamlined encoder and a novel training scheme to map images into a latent space. In the second stage, we minimize the dual-loss functions proposed in Chapter 3 to optimize the latent representation of each image. This method ensures that the generated images effectively remove some identifiable features while retaining crucial diagnostic information. Extensive qualitative and quantitative experiments on the MIMIC-CXR dataset demonstrate that our approach produces high-quality anonymized images that maintain essential diagnostic details, making them well-suited for training machine learning models in lung pathology classification.The conclusion chapter summarizes the scientific contributions of this work, and addresses remaining issues and challenges for producing secured and privacy preserving sensitive medical data
Chapitres de livres sur le sujet "Identity-utility extraction"
Minervini, Dario. « Waste management and value extraction in Italy : Where is the citizen ? Waste to worth ». Dans The Foundational Economy and Citizenship, 159–80. Policy Press, 2020. http://dx.doi.org/10.1332/policypress/9781447353355.003.0008.
Texte intégralActes de conférences sur le sujet "Identity-utility extraction"
Kinaci, Emre, John Chea, Kirti Yenkie et Kylie Howard. « Converting Birch Bark Extracts into Bio-based Thermosets ». Dans 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/wcih1760.
Texte intégral