Littérature scientifique sur le sujet « Hyporheic exchange flows, temperature profiles, hydraulic gradient »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Hyporheic exchange flows, temperature profiles, hydraulic gradient ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Hyporheic exchange flows, temperature profiles, hydraulic gradient"

1

Martone, Ivo, Carlo Gualtieri et Theodore Endreny. « Characterization of Hyporheic Exchange Drivers and Patterns within a Low-Gradient, First-Order, River Confluence during Low and High Flow ». Water 12, no 3 (28 février 2020) : 649. http://dx.doi.org/10.3390/w12030649.

Texte intégral
Résumé :
Confluences are nodes in riverine networks characterized by complex three-dimensional changes in flow hydrodynamics and riverbed morphology, and are valued for important ecological functions. This physical complexity is often investigated within the water column or riverbed, while few studies have focused on hyporheic fluxes, which is the mixing of surface water and groundwater across the riverbed. This study aims to understand how hyporheic flux across the riverbed is organized by confluence physical drivers. Field investigations were carried out at a low gradient, headwater confluence between Baltimore Brook and Cold Brook in Marcellus, New York, USA. The study measured channel bathymetry, hydraulic permeability, and vertical temperature profiles, as indicators of the hyporheic exchange due to temperature gradients. Confluence geometry, hydrodynamics, and morphodynamics were found to significantly affect hyporheic exchange rate and patterns. Local scale bed morphology, such as the confluence scour hole and minor topographic irregularities, influenced the distribution of bed pressure head and the related patterns of downwelling/upwelling. Furthermore, classical back-to-back bend planform and the related secondary circulation probably affected hyporheic exchange patterns around the confluence shear layer. Finally, even variations in the hydrological conditions played a role on hyporheic fluxes modifying confluence planform, and, in turn, flow circulation patterns.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ikard, Scott J., Andrew P. Teeple, Jason D. Payne, Gregory P. Stanton et J. Ryan Banta. « New Insights on Scale-dependent Surface-Groundwater Exchange from a Floating Self-potential Dipole ». Journal of Environmental and Engineering Geophysics 23, no 2 (juin 2018) : 261–87. http://dx.doi.org/10.2113/jeeg23.2.261.

Texte intégral
Résumé :
In south-central Texas the lower Guadalupe River has incised into the outcrop of the Carrizo-Wilcox aquifer. The river and the aquifer are hydraulically connected across the outcrop, although the connectivity is obscured at the surface by alluvium and surface-water and groundwater exchange dynamics are currently poorly understood. To investigate surface-water and groundwater exchange dynamics between the lower Guadalupe River and the Carrizo-Wilcox aquifer, a geophysical study was completed along a 14.86 km reach of the river by using water-borne gradient self-potential (SP) profiling and two-dimensional direct-current electric resistivity tomography. This paper explores the applicability of these water-borne geoelectric methods in delineating gaining and losing channel reaches, and demonstrates that geoelectric signals in the form of total electric field strength can be logged with an electric dipole and decomposed into component SP signals depicting regional and local groundwater flow patterns attributable to regional and localized hydraulic gradients. Localized SP anomalies of several tens of millivolts, indicative of hyporheic exchange flows, are observed and superimposed upon a 124 mV regional SP anomaly indicative of ambient groundwater exchange flows between the river and the aquifer. The observed SP signals are interpreted through two-dimensional finite-element modeling of streaming potentials attributable to ambient groundwater exchange and hyporheic exchange flow patterns. Variables of the channel environment such as temperature and concentration gradients, depth, and velocity are considered and subsequently eliminated as alternative sources of the SP signals that are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kamdem Kamdem, Claude Aurélien, et Xiaolu Zhu. « Numerical Study on the Flow and Heat Transfer Coupled in a Rectangular Mini-Channel by Finite Element Method for Industrial Micro-Cooling Technologies ». Fluids 5, no 3 (3 septembre 2020) : 151. http://dx.doi.org/10.3390/fluids5030151.

Texte intégral
Résumé :
Nowadays, cooling high thermal flows in compact volumes continues to be one of the crucial problems in the industry. With the advent of advanced technologies, much more attention has been paid to how to improve the performance of cooling systems in the area of micro-technologies. Rectangular mini-channels are typical representatives which commonly used for cooling applications. However, micro-technologies still face the problem of low performance due to the low productivity of cooling related to unbefitting physical parameter values. Here, this work studies the applicability of the heat transfer scheme of convective flow and flow boiling in a rectangular mini-channel for satisfying the cooling requirement of industrial micro-technologies, through a simulation model governed by the coupled mechanism from Navier-Stokes (N-S) equation and heat transfer equations with phase change effect. In this work, various hydraulic diameters and different inlet fluid speed are used to calculate the different velocity profiles, pressure drops, coefficients of friction and finally, the distribution of the temperatures and dissipated heat flux. The simulation results show the applicability of the rectangular mini-channel in diverse applications such as engine cooling, electronic components, automotive on-board electronics and aerospace engineering. Flow boiling simulation results reveal that the obtained patterns were smooth mixture flow and discrete flow. The dissipated heat flux can reach 1.02–5.34 MW/m2 for a hydraulic diameter of 0.5 mm. We show that the system with the gradient temperature that evolves increasingly along the top and bottom walls of the channels presents the highest heat flux dissipated in flow boiling. Additionally, the fin efficiency of the system is 0.88 and the coefficient value of convective heat transfer is in the range between 5000 < h < 100,000, which indicates the flow boiling heat transfer is effective in the mini-channel when the Reynolds number is less than 400. It provides a significant heat exchange for cooling in these application areas.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Hyporheic exchange flows, temperature profiles, hydraulic gradient"

1

Gaona, Garcia Jaime. « Groundwater-stream water interactions : point and distributed measurements and innovative upscaling technologies ». Doctoral thesis, Università degli studi di Trento, 2019. http://hdl.handle.net/11572/242544.

Texte intégral
Résumé :
The need to consider groundwater and surface water as a single resource has fostered the interest of the scientific community on the interactions between surface water and groundwater. The region below and alongside rivers where surface hydrology and subsurface hydrology concur is the hyporheic zone. This is the region where water exchange determines many biogeochemical and ecological processes of great impact on the functioning of rivers. However, the complex processes taking place in the hyporheic zone require a multidisciplinary approach. The combination of innovative point and distributed techniques originally developed in separated disciplines is of great advantage for the indirect identification of water exchange in the hyporheic zone. Distributed techniques using temperature as a tracer such as fiber-optic distributed temperature sensing can identify the different components of groundwater-surface water interactions based on their spatial and temporal thermal patterns at the sediment-water interface. In particular, groundwater, interflow discharge and local hyporheic exchange flows can be differentiated based on the distinct size, duration and sign of the temperature anomalies. The scale range and resolution of fiber-optic distributed temperature sensing are well complemented by geophysics providing subsurface structures with a similar resolution and scale. Thus, the use of fiber-optic distributed temperature sensing to trace flux patterns supported by the exploration of subsurface structures with geophysics enables spatial and temporal investigation of groundwater-surface water interactions with an unprecedented level of accuracy and resolution. In contrast to the aforementioned methods that can be used for pattern identification at the interface, other methods such as point techniques are required to quantify hyporheic exchange fluxes. In the present PhD thesis, point methods based on hydraulic gradients and thermal profiles are used to quantify hyporheic exchange flows. However, both methods are one-dimensional methods and assume that only vertical flow occurs while the reality is much more complex. The study evaluates the accuracy of the available methods and the factors that impact their reliability. The applied methods allow not only to quantify hyporheic exchange flows but they are also the basis for an interpretation of the sediment layering in the hyporheic zone. For upscaling of the previous results three-dimensional modelling of flow and heat transport in the hyporheic zone combines pattern identification and quantification of fluxes into a single framework. Modelling can evaluate the influence of factors governing groundwater-surface water interactions as well as assess the impact of multiple aspects of model design and calibration of high impact on the reliability of the simulations. But more importantly, this modelling approach enables accurate estimation of water exchange at any location of the domain with unparalleled resolution. Despite the challenges in 3D modelling of the hyporheic zone and in the integration of point and distributed data in models, the benefits should encourage the hyporheic community to adopt an integrative approach comprising from the measurement to the upscaling of hyporheic processes.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gaona, Garcia Jaime. « Groundwater-stream water interactions : point and distributed measurements and innovative upscaling technologies ». Doctoral thesis, Università degli studi di Trento, 2019. http://hdl.handle.net/11572/242544.

Texte intégral
Résumé :
The need to consider groundwater and surface water as a single resource has fostered the interest of the scientific community on the interactions between surface water and groundwater. The region below and alongside rivers where surface hydrology and subsurface hydrology concur is the hyporheic zone. This is the region where water exchange determines many biogeochemical and ecological processes of great impact on the functioning of rivers. However, the complex processes taking place in the hyporheic zone require a multidisciplinary approach. The combination of innovative point and distributed techniques originally developed in separated disciplines is of great advantage for the indirect identification of water exchange in the hyporheic zone. Distributed techniques using temperature as a tracer such as fiber-optic distributed temperature sensing can identify the different components of groundwater-surface water interactions based on their spatial and temporal thermal patterns at the sediment-water interface. In particular, groundwater, interflow discharge and local hyporheic exchange flows can be differentiated based on the distinct size, duration and sign of the temperature anomalies. The scale range and resolution of fiber-optic distributed temperature sensing are well complemented by geophysics providing subsurface structures with a similar resolution and scale. Thus, the use of fiber-optic distributed temperature sensing to trace flux patterns supported by the exploration of subsurface structures with geophysics enables spatial and temporal investigation of groundwater-surface water interactions with an unprecedented level of accuracy and resolution. In contrast to the aforementioned methods that can be used for pattern identification at the interface, other methods such as point techniques are required to quantify hyporheic exchange fluxes. In the present PhD thesis, point methods based on hydraulic gradients and thermal profiles are used to quantify hyporheic exchange flows. However, both methods are one-dimensional methods and assume that only vertical flow occurs while the reality is much more complex. The study evaluates the accuracy of the available methods and the factors that impact their reliability. The applied methods allow not only to quantify hyporheic exchange flows but they are also the basis for an interpretation of the sediment layering in the hyporheic zone. For upscaling of the previous results three-dimensional modelling of flow and heat transport in the hyporheic zone combines pattern identification and quantification of fluxes into a single framework. Modelling can evaluate the influence of factors governing groundwater-surface water interactions as well as assess the impact of multiple aspects of model design and calibration of high impact on the reliability of the simulations. But more importantly, this modelling approach enables accurate estimation of water exchange at any location of the domain with unparalleled resolution. Despite the challenges in 3D modelling of the hyporheic zone and in the integration of point and distributed data in models, the benefits should encourage the hyporheic community to adopt an integrative approach comprising from the measurement to the upscaling of hyporheic processes.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie