Articles de revues sur le sujet « Hydrogène – Solubilité »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Hydrogène – Solubilité.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Hydrogène – Solubilité ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Sinha, Sneha, Chelsea Yang, Emily Wu et William E. Acree. « Abraham Solvation Parameter Model : Examination of Possible Intramolecular Hydrogen-Bonding Using Calculated Solute Descriptors ». Liquids 2, no 3 (24 juillet 2022) : 131–46. http://dx.doi.org/10.3390/liquids2030009.

Texte intégral
Résumé :
Published solubility data for 4,5-dihydroxyanthraquinone-2-carboxylic acid dissolved in several organic solvents of varying polarity and hydrogen-bonding character are used to calculate the Abraham model solute descriptors. Calculated descriptor values suggest that 4,5-dihydroxyanthraquinone-2-carboxylic acid engages in intramolecular hydrogen formation between the two phenolic hydrogens and the proton acceptor sites (the lone electron pairs) on the neighboring quinone oxygen atom. Our study further shows that existing group contribution and machine learning methods provide rather poor estimates of the experimental-based solute descriptors of 4,5-dihydroxyanthraquinone-2-carboxylic acid, in part because the estimation methods to not account for the likely intramolecular hydrogen-bonds. The predictive aspect of the Abraham model is illustrated by predicting the solubility of 4,5-dihydroxyanthraquinone-2-carboxylic acid in 28 additional organic mono-solvents for which experimental data does not exist.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yamanaka, Shinsuke, Takahiro Matsuura et Masanobu Miyake. « Hydrogen Solubility in Molybdenum* ». Zeitschrift für Physikalische Chemie 1, no 1 (janvier 1992) : 109–15. http://dx.doi.org/10.1524/zpch.1992.1.1.109.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yamanaka, Shinsuke, Takahiro Matsuura et Masanobu Miyake. « Hydrogen Solubility in Molybdenum* ». Zeitschrift für Physikalische Chemie 179, Part_1_2 (janvier 1993) : 103–9. http://dx.doi.org/10.1524/zpch.1993.179.part_1_2.103.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Reinertz, J., W. A. Oates, H. Wenzl et T. Schober. « Hydrogen Solubility in NiAl* ». Zeitschrift für Physikalische Chemie 183, Part_1_2 (janvier 1994) : 99–107. http://dx.doi.org/10.1524/zpch.1994.183.part_1_2.099.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Seta, Shoji, et Hirohisa Uchida. « Hydrogen solubility in LaNi5 ». Journal of Alloys and Compounds 231, no 1-2 (décembre 1995) : 448–53. http://dx.doi.org/10.1016/0925-8388(95)01874-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chen, Huasheng, Chao Liu et Xiaoxiao Xu. « Molecular dynamic simulation of sulfur solubility in H2S system ». International Journal of Modern Physics B 33, no 08 (30 mars 2019) : 1950052. http://dx.doi.org/10.1142/s0217979219500528.

Texte intégral
Résumé :
The elemental sulfur solubility in sour gas plays an important role in H2S-rich gas reservoir development and transportation. While the solubility of elemental sulfur in sour gas can be measured in macroscopical respect, the interaction of solid deposition is not clear at microscale. In this work, molecular dynamic simulation (MD) was adopted to predict the solubility of elemental sulfur in hydrogen sulfide at nanoscale. It is found that the results of new nanoscale solubility model are close to the reported experimental data. The average relative error of the solubility of elemental sulfur in hydrogen sulfide by using the new model is 11.05% compared with the experimental data. Therefore, the new model can be used to predict the solubility of elemental sulfur in hydrogen sulfide.
Styles APA, Harvard, Vancouver, ISO, etc.
7

TRUSH, VASYL. « INFLUENCE OF HYDROGEN SATURATION ON CHARACTERISTICS OF ZIRCONIUM ». Herald of Khmelnytskyi National University. Technical sciences 307, no 2 (2 mai 2022) : 159–68. http://dx.doi.org/10.31891/2307-5732-2022-307-2-159-168.

Texte intégral
Résumé :
The article presents a literature review on the effect of hydrogen saturation on the properties of zirconium alloys. Zirconium alloys are an indispensable structural material for the core of nuclear reactors. During operational loads, the interaction of zirconium materials with interstitial elements (oxygen, nitrogen, hydrogen) necessarily occurs. Zirconium shows the greatest affinity for hydrogen. One of the vulnerable zirconium elements is fuel rod tubes. The safe operation of a nuclear reactor depends on their integrity. In addition, it is fuel tubes that are most exposed to hydrogen. Therefore, the systematization of knowledge about the effect of hydrogen on the properties of zirconium tubes will make it possible to better predict their operational behavior. According to scientific literature data, depending on the volume of absorbed hydrogen, either a solid solution or zirconium hydrides can form. The dependence of the absorbed hydrogen zirconium on the dilution of the hydrogen medium and temperature is shown. The chemical composition of the zirconium alloy also affects the rate and amount of absorbed hydrogen. The effect of hydrogen on the mechanical properties of zirconium alloys is presented. The differences on the fracture surface after tensile tests at room temperature are shown depending on the amount of absorbed hydrogen. Data are presented that indicate that hydrogen atoms are located in octahedral or tetrahedral interstitial voids of a hexagonal close-packed zirconium lattice. It is shown that the thermal solubility of hydrogen in α-zirconium is extremely low, its value is ~6 at. % at the eutectoid transformation temperature, and at room temperature the solubility of α-Zr hydrogen does not exceed 1·10-5 wt. %. In high-temperature β-Zr, hydrogen dissolves up to ~50 at. %. It has been established that deterioration of the properties of zirconium elements of nuclear reactors during operation due to exposure to hydrogen is likely due to a number of factors: hydrogen embrittlement, the formation of large massive accumulations of hydrides and delayed hydride cracking. It is shown that the direction of arrangement of hydrides depends on the texture of the matrix and on the stresses present in the material that act during the formation of hydrides. It has been established that hydrogen can penetrate into a metal through an oxide film, diffusing, for example, along extended defects such as dislocations and grain boundaries. It is noted that the solubility of hydrogen in zirconium depends on other penetration elements already present in the metal, for example, the solubility of hydrogen in α-zirconium depends on the soluble oxygen in the metal matrix, which is confirmed by the reduced «Zr–O–H» ternary system.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chen, Liang, Qian Wang, Wugui Jiang et Haoran Gong. « Hydrogen Solubility in Pd3Ag Phases from First-Principles Calculation ». Metals 9, no 2 (24 janvier 2019) : 121. http://dx.doi.org/10.3390/met9020121.

Texte intégral
Résumé :
First-principles calculation was used to systematically investigate hydrogen solubility in Pd3Ag phases. It was found that the solubility of hydrogen in Pd3Ag phases was much greater than in face-centered cubic (FCC) Pd, suggesting that Ag atoms enhanced hydrogen solubility with respect to FCC Pd. In addition, the present calculation also revealed that the anti-site defect formation enthalpies of Pd3Ag were close to zero, and the values of vacancy were positive and large, which indicated that Pd3Ag distributed compactly. In the process of hydrogen separation, anti-site defects decreased the hydrogen solubility in the Pd3Ag phases, i.e., the ordered Pd3Ag phases bestowed excellent properties of H selectivity. The results presented not only explore the fundamental properties of Pd3Ag phases and their various potential applications, but also agree with experimental observations reported in the literature.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Watanabe, N., G. Zhang, Hiroshi Yukawa, Masahiko Morinaga, T. Nambu, K. Shimizu, S. Sato, K. Morisako, Yoshihisa Matsumoto et Isamu Yasuda. « Hydrogen Solubility and Resistance to Hydrogen Embrittlement of Nb-Pd Based Alloys for Hydrogen Permeable Membrane ». Advanced Materials Research 26-28 (octobre 2007) : 873–76. http://dx.doi.org/10.4028/www.scientific.net/amr.26-28.873.

Texte intégral
Résumé :
The alloying effects of Pd on the hydrogen solubility and the resistance to hydrogen embrittlement are investigated for Nb-xmol%Pd-ymol%Zr (x=0~19; y=0, 1) alloys. The hydrogen solubility at 673 K is found to decrease with increasing Pd content in the alloys. Both pure Nb and Nb-Pd alloys possessed ductility in vacuum at 673 K. However, severe hydrogen embrittlement occurs in pure Nb when it is tested under the hydrogen pressure even as low as 0.01 MPa. In view of the small punch (SP) absorption energy, the addition of Pd into Nb improves the resistance to hydrogen embrittlement by decreasing the hydrogen solubility in the alloy, although brittle fracture is still observed in the Nb-15mol%Pd alloy tested under a hydrogen pressure of 0.015 MPa at 673 K.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Plyasov, A. A., V. V. Novikov et Yu N. Devyatko. « Hydrogen Solubility in Zirconium Alloys ». Physics of Atomic Nuclei 83, no 9 (décembre 2020) : 1328–38. http://dx.doi.org/10.1134/s1063778820090185.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

SHIROTA, Minori, Tomoyuki IMADA, Kohei ITO, Hidetaka MURAMATSU, Yasuyuki TAKATA et Motoo FUJII. « F113 Hydrogen solubility in water ». Proceedings of the National Symposium on Power and Energy Systems 2008.13 (2008) : 269–70. http://dx.doi.org/10.1299/jsmepes.2008.13.269.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Parent, J. Scott, et Garry L. Rempel. « Solubility of Hydrogen in Chlorobenzene ». Journal of Chemical & ; Engineering Data 41, no 2 (janvier 1996) : 192–94. http://dx.doi.org/10.1021/je950213h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Sivakumar, R. « Hydrogen solubility studies in Zr0.2Tb0.8Fe1.5Co1.5 ». International Journal of Hydrogen Energy 25, no 9 (1 septembre 2000) : 861–69. http://dx.doi.org/10.1016/s0360-3199(99)00110-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Rajalakshmi, N., U. V. Varada Raju et K. V. S. Rama Rao. « Solubility of hydrogen in Ti3Cu ». Journal of the Less Common Metals 128 (février 1987) : 57–64. http://dx.doi.org/10.1016/0022-5088(87)90191-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Ramaprabhu, Sundara, Natarajan Rajalakshmi et Alarich Weiss. « Solubility of hydrogen in Ti3In ». Journal of the Less Common Metals 157, no 1 (janvier 1990) : 85–95. http://dx.doi.org/10.1016/0022-5088(90)90409-d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Voyt, A., N. Sidorov, I. Sipatov, M. Dobrotvorskii, V. Piven et I. Gabis. « Hydrogen solubility in V85Ni15 alloy ». International Journal of Hydrogen Energy 42, no 5 (février 2017) : 3058–63. http://dx.doi.org/10.1016/j.ijhydene.2016.10.033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Shirasu, Yoshirou, Shinsuke Yamanaka et Masanobu Miyake. « Hydrogen solubility in boron carbide ». Journal of Alloys and Compounds 190, no 1 (décembre 1992) : 87–90. http://dx.doi.org/10.1016/0925-8388(92)90180-h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Katsuta, H., H. Iwamoto et H. Ohno. « Hydrogen solubility in liquid Li17Pb83 ». Journal of Nuclear Materials 133-134 (août 1985) : 167–70. http://dx.doi.org/10.1016/0022-3115(85)90127-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Lewis, F. A. « Solubility of hydrogen in metals ». Pure and Applied Chemistry 62, no 11 (1 janvier 1990) : 2091–96. http://dx.doi.org/10.1351/pac199062112091.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Yamanaka, S., K. Higuchi et M. Miyake. « Hydrogen solubility in zirconium alloys ». Journal of Alloys and Compounds 231, no 1-2 (décembre 1995) : 503–7. http://dx.doi.org/10.1016/0925-8388(95)01864-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Lv, Yating, Feifei Xu, Fei Liu et Maoshen Chen. « Investigation of Structural Characteristics and Solubility Mechanism of Edible Bird Nest : A Mucin Glycoprotein ». Foods 12, no 4 (5 février 2023) : 688. http://dx.doi.org/10.3390/foods12040688.

Texte intégral
Résumé :
In this study, the possible solubility properties and water-holding capacity mechanism of edible bird nest (EBN) were investigated through a structural analysis of soluble and insoluble fractions. The protein solubility and the water-holding swelling multiple increased from 2.55% to 31.52% and 3.83 to 14.00, respectively, with the heat temperature increase from 40 °C to 100 °C. It was observed that the solubility of high-Mw protein increased through heat treatment; meanwhile, part of the low-Mw fragments was estimated to aggregate to high-Mw protein with the hydrophobic interactions and disulfide bonds. The increased crystallinity of the insoluble fraction from 39.50% to 47.81% also contributed to the higher solubility and stronger water-holding capacity. Furthermore, the hydrophobic interactions, hydrogen bonds, and disulfide bonds in EBN were analyzed and the results showed that hydrogen bonds with burial polar group made a favorable contribution to the protein solubility. Therefore, the crystallization area degradation under high temperature with hydrogen bonds and disulfide bonds may be the main reasons underlying the solubility properties and water-holding capacity of EBN.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Gao, Guang Hua, et Guang Wei Zhai. « Determination of Solubility of Hydrogen in Polymer Solution at High Pressure ». Advanced Materials Research 641-642 (janvier 2013) : 253–55. http://dx.doi.org/10.4028/www.scientific.net/amr.641-642.253.

Texte intégral
Résumé :
Abstract. The solubility of hydrogen in styrene-butadiene-styrene (SBS) block copolymer-cyclohexane solution was determined under 3, 6 and 10 MPa pressures and at temperatures from 50°C to 150°C respectively. The experimental results showed that the solubility of hydrogen increases with risen pressure, temperature as well as concentration of SBS polymer in the cyclohexane solvent. The measured data of gas solubility could be successfully correlated by PRSV equation of state.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Lho, Taihyeop, Yong-Sup Choi et HyonJae Park. « Hydrogen Solubility of FLiNaK with Hydrogen Plasma Interaction ». Fusion Science and Technology 63, no 1T (mai 2013) : 106–10. http://dx.doi.org/10.13182/fst13-a16882.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Yukawa, Hiroshi, T. Nambu et Yoshihisa Matsumoto. « In Situ Analysis of Hydrogen Mobility during Hydrogen Permeation through Nb-Based Hydrogen Permeable Membranes ». Defect and Diffusion Forum 312-315 (avril 2011) : 506–12. http://dx.doi.org/10.4028/www.scientific.net/ddf.312-315.506.

Texte intégral
Résumé :
The hydrogen solubility and the hydrogen permeability have been measured for Nb-based alloys in order to investigate the alloying effects on the hydrogen diffusivity during hydrogen permeation. It is found that the hydrogen solubility decreases by the addition of ruthenium, tungsten or molybdenum into niobium. The mobility for hydrogen diffusion during hydrogen permeation is estimated from the linear relationship between the normalized hydrogen flux, , and the product of the hydrogen concentration and the difference of hydrogen chemical potential, . It is found that the mobility for hydrogen diffusion during hydrogen permeation is larger for Nb-based alloys than pure niobium, especially at low temperature. The activation energy of the mobility for hydrogen diffusion decreases by the addition of ruthenium, tungsten or molybdenum into niobium.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Ji, Shunfeng, et Anran Zeng. « Solubility and Activation of Hydrogen in the Non-Catalytic Upgrading of Venezuela Orinoco, China Liaohe, and China Fengcheng Atmospheric Residues ». Processes 9, no 12 (17 décembre 2021) : 2274. http://dx.doi.org/10.3390/pr9122274.

Texte intégral
Résumé :
The solubility of hydrogen in the Venezuela Orinoco, China Liaohe, and China Fengcheng atmospheric residues under reaction conditions of 400 °C, 4 MPa for 20 min was analyzed by determining the composition and structure changes of the products. Activation of hydrogen during the upgrading process was also determined and discussed by the probe method. The results show that lighter components produced in the reaction can increase the hydrogen solubility as the reaction proceeds, and the lighter components present at the liquid level have positive effects on the transfer of hydrogen from the gas phase to the liquid phase. Naphthenic aromatic structures, sulphur and metals have a positive effect on hydrogen activation in the trend of naphthenic aromatic structures > sulphur > metals. Moreover, when sulphur is present, nickel tetraphenylporphyrin has a better effect on hydrogen activation than Vanadium tetraphenylporphyrin. During upgrading, the Venezuela Orinoco atmospheric residue with more sulphur, metals and naphthenic aromatic structures can activate more hydrogen. Both the hydrogen solubility and residue composition have significant effect on the upgrading process.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Marukovich, E. I., V. Yu Stetsenko et A. V. Stetsenko. « Dissolution of hydrogen in metals and casting alloys ». Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY), no 3 (14 octobre 2022) : 53–57. http://dx.doi.org/10.21122/1683-6065-2022-3-53-57.

Texte intégral
Résumé :
Thermodynamic calculations have shown that hydrogen from atmospheric water vapors can penetrate aluminum, iron and copper, especially into their melts. Hydrogen atoms in these metals are in free and adsorbed states. Strong and dense oxide films on the surfaces of aluminum, iron and copper significantly reduce the solubility of hydrogen in these metals. Copper and iron nanocrystals more actively adsorb atomic hydrogen than aluminum nanocrystals. This is one of the main reasons for the weak solubility of hydrogen in aluminum and the large desorption of hydrogen atoms in the crystallization of aluminum compared to iron and copper.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Abraham, Michael H., Gary S. Whiting, Wendel J. Shuely et Ruth M. Doherty. « The solubility of gases and vapours in ethanol - the connection between gaseous solubility and water-solvent partition ». Canadian Journal of Chemistry 76, no 6 (1 juin 1998) : 703–9. http://dx.doi.org/10.1139/v98-029.

Texte intégral
Résumé :
Ostwald solubility coefficients, as log L, for solutes in water and ethanol have been combined to give log PEtOH for partition between the two pure solvents. Sixty-four such values have been correlated through our solvation equation, the coefficients of which lead to the conclusion that ethanol and water solvents are equally strong hydrogen-bond bases, but that ethanol is much weaker as a hydrogen-bond acid. A slightly different solvation equation has been used to correlate 68 values of log LEtOH; the coefficients in this equation yield the same conclusions as to the hydrogen-bond acidity and basicity of bulk ethanol. In addition, an analysis of the various terms in the log LEtOH correlation equation allows the elucidation of the various chemical factors that govern the solubility of gaseous solutes in ethanol solvent at 298 K.Key words: solubility, partition, hydrogen-bonding, ethanol, water.
Styles APA, Harvard, Vancouver, ISO, etc.
28

He, Meiqi, Wenwen Zheng, Nannan Wang, Hanlu Gao, Defang Ouyang et Zunnan Huang. « Molecular Dynamics Simulation of Drug Solubilization Behavior in Surfactant and Cosolvent Injections ». Pharmaceutics 14, no 11 (3 novembre 2022) : 2366. http://dx.doi.org/10.3390/pharmaceutics14112366.

Texte intégral
Résumé :
Surfactants and cosolvents are often combined to solubilize insoluble drugs in commercially available intravenous formulations to achieve better solubilization. In this study, six marketed parenteral formulations with surfactants and cosolvents were investigated on the aggregation processes of micelles, the structural characterization of micelles, and the properties of solvent using molecular dynamics simulations. The addition of cosolvents resulted in better hydration of the core and palisade regions of micelles and an increase in both radius of gyration (Rg) and the solvent accessible surface area (SASA), causing a rise in critical micelle concentration (CMC), which hindered the phase separation of micelles. At the same time, the presence of cosolvents disrupted the hydrogen bonding structure of water in solution, increasing the solubility of insoluble medicines. Therefore, the solubilization mechanism of the cosolvent and surfactant mixtures was successfully analyzed by molecular dynamics simulation, which will benefit future formulation development for drug delivery.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Honjo, Takamitsu, Tohru Nobuki, Masafumi Chiba et Toshiro Kuji. « Hydrogen Solubility of Mg-C Composites ». Journal of the Japan Institute of Metals 71, no 8 (2007) : 603–7. http://dx.doi.org/10.2320/jinstmet.71.603.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

IMABAYASHI, Mamoru, Minoru ICHIMURA et Yasushi SASAJIMA. « Solubility of hydrogen in molten aluminum. » Journal of Japan Institute of Light Metals 45, no 5 (1995) : 278–83. http://dx.doi.org/10.2464/jilm.45.278.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Tuli, Vidur, Antoine Claisse et Patrick A. Burr. « Hydrogen solubility in Zr–Nb alloys ». Scripta Materialia 214 (juin 2022) : 114652. http://dx.doi.org/10.1016/j.scriptamat.2022.114652.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

ICHIMURA, Minoru, Yasushi SASAJIMA et Mamoru IMABAYASHI. « Hydrogen solubility in aluminum-copper alloys. » Journal of Japan Institute of Light Metals 39, no 9 (1989) : 639–45. http://dx.doi.org/10.2464/jilm.39.639.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Binns, M. J., R. C. Newman, S. A. McQuaid et Edward C. Lightowlers. « Hydrogen Solubility and Defects in Silicon ». Materials Science Forum 143-147 (octobre 1993) : 861–66. http://dx.doi.org/10.4028/www.scientific.net/msf.143-147.861.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Talbot, D. E. J., et P. N. Anyalebechi. « Solubility of hydrogen in liquid aluminium ». Materials Science and Technology 4, no 1 (janvier 1988) : 1–4. http://dx.doi.org/10.1179/mst.1988.4.1.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Sakamoto, Y., Y. Tanaka, K. Baba et T. B. Flanagan. « Hydrogen Solubility in Palladium-Boron Alloys ». Zeitschrift für Physikalische Chemie 158, Part_2 (janvier 1988) : 237–51. http://dx.doi.org/10.1524/zpch.1988.158.part_2.237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Sakamoto, Y., K. Kajihara, Y. Fukusaki et Ted B. Flanagan. « Hydrogen Solubility in Palladium-Yttrium Alloys ». Zeitschrift für Physikalische Chemie 159, Part_1 (janvier 1988) : 61–74. http://dx.doi.org/10.1524/zpch.1988.159.part_1.061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Rajalakshmi, N. « Hydrogen solubility properties of Ti0.42Zr0.08Fe0.50 alloy ». International Journal of Hydrogen Energy 24, no 7 (1 juillet 1999) : 625–29. http://dx.doi.org/10.1016/s0360-3199(98)00121-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Uno, M., K. Takahashi, T. Maruyama, H. Muta et S. Yamanaka. « Hydrogen solubility of BCC titanium alloys ». Journal of Alloys and Compounds 366, no 1-2 (mars 2004) : 213–16. http://dx.doi.org/10.1016/s0925-8388(03)00749-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

MATYSINA, Z. « Hydrogen solubility in alloys under pressure ». International Journal of Hydrogen Energy 21, no 11-12 (novembre 1996) : 1085–89. http://dx.doi.org/10.1016/s0360-3199(96)00050-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Lal, D., F. D. Otto et A. E. Mather. « Solubility of hydrogen in Athabasca bitumen ». Fuel 78, no 12 (octobre 1999) : 1437–41. http://dx.doi.org/10.1016/s0016-2361(99)00071-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Xu, Z. R., et R. B. McLellan. « The solubility of hydrogen in NiAl ». Acta Materialia 46, no 8 (mai 1998) : 2877–80. http://dx.doi.org/10.1016/s1359-6454(97)00480-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Ronze, Didier, Pascal Fongarland, Isabelle Pitault et Michel Forissier. « Hydrogen solubility in straight run gasoil ». Chemical Engineering Science 57, no 4 (février 2002) : 547–53. http://dx.doi.org/10.1016/s0009-2509(01)00404-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Yang, L., et R. B. McLellan. « The solubility of hydrogen in Ni3Al ». Acta Metallurgica et Materialia 42, no 12 (décembre 1994) : 3993–96. http://dx.doi.org/10.1016/0956-7151(94)90176-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Lin, Jinq-Jy, Tsong-Pyng Perng et Chuin-Tih Yeh. « Hydrogen solubility in amorphous Fe40Ni38Mo4B18 alloy ». Scripta Metallurgica et Materialia 25, no 5 (mai 1991) : 1179–82. http://dx.doi.org/10.1016/0956-716x(91)90524-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Zhou, Zhiming, Zhenmin Cheng, Dong Yang, Xiao Zhou et Weikang Yuan. « Solubility of Hydrogen in Pyrolysis Gasoline ». Journal of Chemical & ; Engineering Data 51, no 3 (mai 2006) : 972–76. http://dx.doi.org/10.1021/je050478o.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Sakamoto, Y., K. Kajihara, E. Ono, K. Baba et Ted B. Flanagan. « Hydrogen Solubility in Palladium — Vanadium Alloys ». Zeitschrift für Physikalische Chemie 165, Part_1 (janvier 1989) : 67–81. http://dx.doi.org/10.1524/zpch.1989.165.part_1.067.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Moehlecke, S., C. F. Majkrzak et Myron Strongin. « Enhanced hydrogen solubility in niobium films ». Physical Review B 31, no 10 (15 mai 1985) : 6804–6. http://dx.doi.org/10.1103/physrevb.31.6804.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Astaf'ev, A. A., V. G. Dubinskaya et N. D. Eremenko. « Solubility of hydrogen in worked steel ». Metal Science and Heat Treatment 29, no 7 (juillet 1987) : 508–11. http://dx.doi.org/10.1007/bf01167736.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Shirasu, Yoshirou, Shinsuke Yamanaka et Masanobu Miyake. « Solubility of hydrogen isotopes in graphite ». Journal of Nuclear Materials 179-181 (mars 1991) : 223–26. http://dx.doi.org/10.1016/0022-3115(91)90066-g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Su, Yanqing, Xinwang Liu, Liangshun Luo, Long Zhao, Jingjie Guo et Hengzhi Fu. « Hydrogen solubility in molten TiAl alloys ». International Journal of Hydrogen Energy 35, no 15 (août 2010) : 8008–13. http://dx.doi.org/10.1016/j.ijhydene.2010.05.054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie