Articles de revues sur le sujet « Hydroformylation of Alkenes »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Hydroformylation of Alkenes.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Hydroformylation of Alkenes ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Shi, Yukun, Yang Lu, Tongxin Ren, Jie Li, Qiqige Hu, Xiaojing Hu, Baolin Zhu et Weiping Huang. « Rh Particles Supported on Sulfated g-C3N4 : A Highly Efficient and Recyclable Heterogeneous Catalyst for Alkene Hydroformylation ». Catalysts 10, no 11 (23 novembre 2020) : 1359. http://dx.doi.org/10.3390/catal10111359.

Texte intégral
Résumé :
The hydroformylation of alkenes with CO and H2 to manufacture aldehydes is one of the most large-scale chemical reactions. However, an efficient and recyclable heterogeneous catalyst for alkene hydroformylation is extremely in demand in academia and industry. In this study, a sulfated carbon nitride supported rhodium particle catalyst (Rh/S-g-C3N4) was successfully synthesized via an impregnation-borohydride reduction method and applied in the hydroformylation of alkenes. The catalysts were characterized by XRD, FTIR, SEM, TEM, XPS, and nitrogen adsorption. The influence of the sulfate content, pressure of syngas, temperature, and reaction time, as well as the stability of Rh/S-g-C3N4, on the hydroformylation was examined in detail. The delocalized conjugated structure in g-C3N4 can lead to the formation of electron-deficient aromatic intermediates with alkenes. The sulphate g-C3N4 has a defected surface owing to the formation of oxygen vacancies, which increased the adsorption and dispersion of RhNPs on the surface of g-C3N4. Therefore, Rh/S-g-C3N4 exhibited an outstanding catalytic performance for styrene hydroformylation (TOF = 9000 h−1), the conversion of styrene could reach 99.9%, and the regioselectivity for the branched aldehyde was 52% under the optimized reaction conditions. The catalytic properties of Rh/S-g-C3N4 were also studied in the hydroformylation of various alkenes and displayed an excellent catalytic performance. Furthermore, the reuse of Rh/S-g-C3N4 was tested for five recycling processes, without an obvious decrease in the activity and selectivity under the optimum reaction conditions. These findings demonstrated that Rh/S-g-C3N4 is a potential catalyst for heterogeneous hydroformylation.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Doyle, MM, WR Jackson et P. Perlmutter. « The Stereochemistry of Organometallic Compounds. XXXIV. Regioselection in the Hydroformylation of Silylalkenes ». Australian Journal of Chemistry 42, no 11 (1989) : 1907. http://dx.doi.org/10.1071/ch9891907.

Texte intégral
Résumé :
The regiochemistry of hydroformylation of alkenes can be controlled by the use of bulky silyl groups attached to the alkene. Use of the t-butyldiphenylsilyl group leads to almost total regiocontrol and the method has been applied to the synthesis of aldols.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hood, Drew M., Ryan A. Johnson, Alex E. Carpenter, Jarod M. Younker, David J. Vinyard et George G. Stanley. « Highly active cationic cobalt(II) hydroformylation catalysts ». Science 367, no 6477 (30 janvier 2020) : 542–48. http://dx.doi.org/10.1126/science.aaw7742.

Texte intégral
Résumé :
The cobalt complexes HCo(CO)4 and HCo(CO)3(PR3) were the original industrial catalysts used for the hydroformylation of alkenes through reaction with hydrogen and carbon monoxide to produce aldehydes. More recent and expensive rhodium-phosphine catalysts are hundreds of times more active and operate under considerably lower pressures. Cationic cobalt(II) bisphosphine hydrido-carbonyl catalysts that are far more active than traditional neutral cobalt(I) catalysts and approach rhodium catalysts in activity are reported here. These catalysts have low linear-to-branched (L:B) regioselectivity for simple linear alkenes. However, owing to their high alkene isomerization activity and increased steric effects due to the bisphosphine ligand, they have high L:B selectivities for internal alkenes with alkyl branches. These catalysts exhibit long lifetimes and substantial resistance to degradation reactions.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Yu, Xuetong, Yuxia Ji, Yan Jiang, Rui Lang, Yanxiong Fang et Botao Qiao. « Recent Development of Single-Atom Catalysis for the Functionalization of Alkenes ». Catalysts 13, no 4 (12 avril 2023) : 730. http://dx.doi.org/10.3390/catal13040730.

Texte intégral
Résumé :
The functionalization of alkenes is one of the most important conversions in synthetic chemistry to prepare numerous fine chemicals. Typical procedures, such as hydrosilylation and hydroformylation, are traditionally catalyzed using homogeneous noble metal complexes, while the highly reactive and stable heterogeneous single-atom catalysts (SACs) now provide alternative approaches to fulfill these conversions by combining the advantages of both homogeneous catalysts and heterogeneous nanoparticle catalysts. In this review, the recent achievement in single-atom catalyzed hydrosilylation and hydroformylation reactions are introduced, and we highlight the latest applications of SACs for additive reactions, constructing new C-Y (Y = B, P, S, N) bonds on the terminal carbon atoms of alkenes, and then mention the applications in single-metal-atom catalyzed hydrogenation and epoxidation reactions. We also note that some tandem reactions are conveniently realized in one pot by the concisely fabricated SACs, facilitating the preparation of some pharmaceutical compounds. Lastly, the challenges facing single-atom catalysis for alkene conversions are briefly mentioned.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Geng, Hui-Qing, Tim Meyer, Robert Franke et Xiao-Feng Wu. « Copper-catalyzed hydroformylation and hydroxymethylation of styrenes ». Chemical Science 12, no 44 (2021) : 14937–43. http://dx.doi.org/10.1039/d1sc05474k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Peral, Daniel, Daniel Herrera, Julio Real, Teresa Flor et J. Carles Bayón. « Strong π-acceptor sulfonated phosphines in biphasic rhodium-catalyzed hydroformylation of polar alkenes ». Catalysis Science & ; Technology 6, no 3 (2016) : 800–808. http://dx.doi.org/10.1039/c5cy01004g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chevry, M., T. Vanbésien, S. Menuel, E. Monflier et F. Hapiot. « Tetronics/cyclodextrin-based hydrogels as catalyst-containing media for the hydroformylation of higher olefins ». Catalysis Science & ; Technology 7, no 1 (2017) : 114–23. http://dx.doi.org/10.1039/c6cy02070d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Shi, Yukun, Gang Ji, Qiqige Hu, Yang Lu, Xiaojing Hu, Baolin Zhu et Weiping Huang. « Highly uniform Rh nanoparticles supported on boron doped g-C3N4 as a highly efficient and recyclable catalyst for heterogeneous hydroformylation of alkenes ». New Journal of Chemistry 44, no 1 (2020) : 20–23. http://dx.doi.org/10.1039/c9nj05385a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wu, Lipeng, Qiang Liu, Anke Spannenberg, Ralf Jackstell et Matthias Beller. « Highly regioselective osmium-catalyzed hydroformylation ». Chemical Communications 51, no 15 (2015) : 3080–82. http://dx.doi.org/10.1039/c4cc05626d.

Texte intégral
Résumé :
Osmium carbonyl combined with 2-imidazoyl-substituted phosphine ligands forms active species for the highly regioselective and general hydroformylation of alkenes to produce aldehydes in good yields and excellent regioselectivities. An unusual phosphido bridged trinuclear osmium catalyst structure was obtained.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Nandakumar, Avanashiappan, Manoj K. Sahoo et Ekambaram Balaraman. « Reverse-hydroformylation : a missing reaction explored ». Organic Chemistry Frontiers 2, no 10 (2015) : 1422–24. http://dx.doi.org/10.1039/c5qo00229j.

Texte intégral
Résumé :
Recent progress in transition-metal catalysed acceptor- and acceptorless-reverse hydroformylation of aldehydes for the conversion of olefins has been discussed. The aldehyde feedstock serves as a source for production of syngas and valuable alkenes.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Krupčík, Ján, et Dušan Repka. « Analysis of hydroformylation products of higher n-alkenes by capillary gas chromatography ». Collection of Czechoslovak Chemical Communications 50, no 8 (1985) : 1808–18. http://dx.doi.org/10.1135/cccc19851808.

Texte intégral
Résumé :
A mixture of alcohols obtained by hydroformylation of C10-C13 n-alkenes was analyzed by capillary gas chromatography using Carbowax 20M stationary phase, and acetates prepared from the alcohols were analyzed on capillary columns using Carbowax 20M and Apiezon L stationary phases. The capillary gas chromatography and gas chromatography-mass spectrometry treatment gave evidence that all of the 24 alcohols that could form by the hydroformylation reaction mechanism were present.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Terhorst, M., C. Plass, A. Hinzmann, A. Guntermann, T. Jolmes, J. Rösler, D. Panke et al. « One-pot synthesis of aldoximes from alkenes via Rh-catalysed hydroformylation in an aqueous solvent system ». Green Chemistry 22, no 22 (2020) : 7974–82. http://dx.doi.org/10.1039/d0gc03141k.

Texte intégral
Résumé :
Aldoxime synthesis directly starting from alkenes was successfully achieved through the combination of hydroformylation and subsequent condensation of the aldehyde intermediate with aqueous hydroxylamine in a one-pot process.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Bibouche, Bachir, Daniel Peral, Dmitrij Stehl, Viktor Söderholm, Reinhard Schomäcker, Regine von Klitzing et Dieter Vogt. « Multiphasic aqueous hydroformylation of 1-alkenes with micelle-like polymer particles as phase transfer agents ». RSC Advances 8, no 41 (2018) : 23332–38. http://dx.doi.org/10.1039/c8ra04022b.

Texte intégral
Résumé :
Micelle-like polyelectrolyte polymer particles were applied as phase transfer agents and catalyst carriers in the multiphasic hydroformylation of long chain alkenes achieving high turnover frequencies and efficient catalyst recovery.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Kämper, Alexander, Peter Kucmierczyk, Thomas Seidensticker, Andreas J. Vorholt, Robert Franke et Arno Behr. « Ruthenium-catalyzed hydroformylation : from laboratory to continuous miniplant scale ». Catalysis Science & ; Technology 6, no 22 (2016) : 8072–79. http://dx.doi.org/10.1039/c6cy01374k.

Texte intégral
Résumé :
Ruthenium running its rounds – recycling of a homogeneous ruthenium catalyst for hydroformylation of linear aliphatic alkenes by ex situ product extraction and successful application in a continuously operated miniplant for 90 h.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Imam, Hasan T., Amanda G. Jarvis, Veronica Celorrio, Irshad Baig, Christopher C. R. Allen, Andrew C. Marr et Paul C. J. Kamer. « Catalytic and biophysical investigation of rhodium hydroformylase ». Catalysis Science & ; Technology 9, no 22 (2019) : 6428–37. http://dx.doi.org/10.1039/c9cy01679a.

Texte intégral
Résumé :
Rh-Containing artificial metalloenzymes based on two mutants of sterol carrier protein_2L (SCP_2L) have been shown to act as hydroformylases, exhibiting significant activity and unexpectedly high selectivity in the hydroformylation of alkenes.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Liu, Yan-li, Jian-gui Zhao, Yuan-jiang Zhao, Hui-Min Liu, Hai-yan Fu, Xue-li Zheng, Mao-lin Yuan, Rui-xiang Li et Hua Chen. « Homogeneous hydroformylation of long chain alkenes catalyzed by water soluble phosphine rhodium complex in CH3OH and efficient catalyst cycling ». RSC Advances 9, no 13 (2019) : 7382–87. http://dx.doi.org/10.1039/c8ra08787c.

Texte intégral
Résumé :
Hydroformylation of long-chain alkenes proceeded homogeneously in methanol efficiently. The catalyst could be separated heterogeneously when methanol was removed and recycled for four times without obvious loss in catalytic performance and rhodium.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Takeuchi, Ryo, et Nobuhiro Sato. « Hydroformylation of alkenes having organosilicon substituents ». Journal of Organometallic Chemistry 393, no 1 (août 1990) : 1–10. http://dx.doi.org/10.1016/0022-328x(90)87193-h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kardasheva, Yulia, Maria Terenina, Daniil Sokolov, Natalia Sinikova, Sergey Kardashev et Eduard Karakhanov. « Hydroformylation of Alkenes over Phosphorous-Free Rhodium Supported on N-Doped Silica ». Catalysts 13, no 5 (28 avril 2023) : 818. http://dx.doi.org/10.3390/catal13050818.

Texte intégral
Résumé :
A new phosphorous-free rhodium supported on a nitrogen-doped silica was successfully used as a catalyst for the hydroformylation of alkenes. The obtained material and the catalyst were characterized by XRD, XPS, FTIR, SEM, TEM, ICP AES, and low-temperature nitrogen adsorption–desorption measurements. The catalytic performance was studied by the example of the hydroformylation of octene-1 at temperatures of 80–140 °C and a pressure of 5.0 MPa. The catalyst provided a 99% conversion of 1-octene with a 98% yield of aldehydes and showed a good conversion of styrene and cyclohexene. The catalyst can be repeatedly used in ten consecutive cycles, with its activity remaining constant.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Zhang, Yang, Michel Sigrist et Paweł Dydio. « Palladium‐Catalyzed Hydroformylation of Alkenes and Alkynes ». European Journal of Organic Chemistry 2021, no 44 (19 octobre 2021) : 5985–97. http://dx.doi.org/10.1002/ejoc.202101020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Reek, J., M. Kuil, T. Soltner et P. van Leeuwen. « Hydroformylation of Internal Alkenes by Encapsulated Rhodium ». Synfacts 2006, no 12 (décembre 2006) : 1262. http://dx.doi.org/10.1055/s-2006-949501.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Sharma, Sumeet K., et Raksh V. Jasra. « Aqueous phase catalytic hydroformylation reactions of alkenes ». Catalysis Today 247 (juin 2015) : 70–81. http://dx.doi.org/10.1016/j.cattod.2014.07.059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Cocq, Aurélien, Hervé Bricout, Florence Djedaïni-Pilard, Sébastien Tilloy et Eric Monflier. « Rhodium-Catalyzed Aqueous Biphasic Olefin Hydroformylation Promoted by Amphiphilic Cyclodextrins ». Catalysts 10, no 1 (1 janvier 2020) : 56. http://dx.doi.org/10.3390/catal10010056.

Texte intégral
Résumé :
Hydroformylation is an industrial process that allows for the production of aldehydes from alkenes using transition metals. The reaction can be carried out in water, and the catalyst may be recycled at the end of the reaction. The industrial application of rhodium-catalyzed aqueous hydroformylation has been demonstrated for smaller olefins (propene and butene). Unfortunately, larger olefins are weakly soluble in water, which results in very low catalytic activity. In an attempt to counteract this, we investigated the use of amphiphilic oleic succinyl-cyclodextrins (OS-CDs) synthesized from oleic acid derivatives and maleic anhydride. OS-CDs were found to increase the catalytic activity of rhodium during the hydroformylation of water-insoluble olefins, such as 1-decene and 1-hexadecene, by promoting mass transfer. Recyclability of the catalytic system was also evaluated in the presence of these cyclodextrins.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Zhang, Xiaoli, Juan Wei et Xiaoming Zhang. « Encapsulated liquid nano-droplets for efficient and selective biphasic hydroformylation of long-chain alkenes ». New Journal of Chemistry 43, no 35 (2019) : 14134–38. http://dx.doi.org/10.1039/c9nj02493j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Jackson, W. Roy, Patrick Parlmutter et Guem-Hee Suh. « Chelation control in the hydroformylation of terminal alkenes ». Journal of the Chemical Society, Chemical Communications, no 10 (1987) : 724. http://dx.doi.org/10.1039/c39870000724.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Tao, Lin, Mingmei Zhong, Jian Chen, Sanjeevi Jayakumar, Lina Liu, He Li et Qihua Yang. « Heterogeneous hydroformylation of long-chain alkenes in IL-in-oil Pickering emulsion ». Green Chemistry 20, no 1 (2018) : 188–96. http://dx.doi.org/10.1039/c7gc02574b.

Texte intégral
Résumé :
An IL-in-oil Pickering emulsion prepared with Rh-sulfo-xantphos as the catalyst and dendritic mesoporous silica nanospheres as the stabilizer could efficiently catalyze the hydroformylation of 1-dodecene to afford TOF as high as 413 h−1.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Meyer, Wolfgang H., Richard J. Bowen et David G. Billing. « Tri(3-pyridyl)phosphine as Amphiphilic Ligand in the Rhodium-catalysed Hydroformylation of 1-Hexene ». Zeitschrift für Naturforschung B 62, no 3 (1 mars 2007) : 339–45. http://dx.doi.org/10.1515/znb-2007-0306.

Texte intégral
Résumé :
The molecular structure of carbonylchlorobis(tri(3-pyridyl)phosphine)rhodium, 1, has been determined by X-ray diffraction methods. The N-protonated trifluoromethanesulfonate (triflate) complex 3 was synthesised as a model compound for the extraction of a rhodium complex bearing amphiphilic ligands which can allow catalyst recycling in the hydroformylation of alkenes by using their distribution behavior in organic and aqueous solvents of different pH. The high water-solubility of the employed ligand renders the recycling method as only partly successful due to insufficient extraction from the water phase into the organic phase. In the hydroformylation of 1-hexene the production of n-heptanal is slightly disfavoured when using the ligand tri(3-pyridyl)phosphine as compared to triphenylphosphine which can be ascribed to a higher amount of ligand-deficient active rhodium complexes of the less basic pyridyl phosphine ligand under CO pressure.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Breit, Bernhard, et Wolfgang Seiche. « Self-assembly of bidentate ligands for combinatorial homogeneous catalysis based on an A-T base pair model ». Pure and Applied Chemistry 78, no 2 (1 janvier 2006) : 249–56. http://dx.doi.org/10.1351/pac200678020249.

Texte intégral
Résumé :
A new concept for generation of chelating ligand libraries for homogeneous metal complex catalysis based on self-assembly is presented. Thus, self-assembly of structurally simple monodentate ligands in order to give structurally more complex bidentate ligands is achieved employing hydrogen bonding. Based on this concept and on the 2-pyridone/hydroxypyridine tautomeric system, a new rhodium catalyst was identified which operated with excellent activity and regioselectivity upon hydroformylation of terminal alkenes. In order to generate defined unsymmetrical heterodimeric ligands, an A-T base pair analog-the aminopyridine/isoquinolone system-was developed which allows for complementary hydrogen bonding. Based on this platform, a 4 x 4 phosphine ligand library was screened in the course of the rhodium-catalyzed hydroformylation of 1-octene. A catalyst operating with outstanding activity and regioselectivity in favor of the linear aldehyde was discovered.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Adams, Dave J., James A. Bennett, David J. Cole-Hamilton, Eric G. Hope, Jonathan Hopewell, Jo Kight, Peter Pogorzelec et Alison M. Stuart. « Rhodium catalysed hydroformylation of alkenes using highly fluorophilic phosphines ». Dalton Transactions, no 24 (2005) : 3862. http://dx.doi.org/10.1039/b510766k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Desset, Simon L., Simon W. Reader et David J. Cole-Hamilton. « Aqueous-biphasic hydroformylation of alkenes promoted by “weak” surfactants ». Green Chemistry 11, no 5 (2009) : 630. http://dx.doi.org/10.1039/b822139a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Watkins, Avery L., Brian G. Hashiguchi et Clark R. Landis. « Highly Enantioselective Hydroformylation of Aryl Alkenes with Diazaphospholane Ligands ». Organic Letters 10, no 20 (16 octobre 2008) : 4553–56. http://dx.doi.org/10.1021/ol801723a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Tominaga, Ken-ichi, et Yoshiyuki Sasaki. « Ruthenium complex-catalyzed hydroformylation of alkenes with carbon dioxide ». Catalysis Communications 1, no 1-4 (novembre 2000) : 1–3. http://dx.doi.org/10.1016/s1566-7367(00)00006-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Achonduh, George, Qian Yang et Howard Alper. « From alkenes to alcohols by cobalt-catalyzed hydroformylation–reduction ». Tetrahedron 71, no 8 (février 2015) : 1241–46. http://dx.doi.org/10.1016/j.tet.2015.01.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

MacDougall, Joanna K., et David J. Cole-Hamilton. « Alcohols as sources of hydrogen in hydroformylation of alkenes ». Polyhedron 9, no 9 (janvier 1990) : 1235–36. http://dx.doi.org/10.1016/s0277-5387(00)86901-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Webb, Paul B., Thulani E. Kunene et David J. Cole-Hamilton. « Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids ». Green Chemistry 7, no 5 (2005) : 373. http://dx.doi.org/10.1039/b416713a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Murzin, Dmitry Yu, Andreas Bernas et Tapio Salmi. « Kinetic modelling of regioselectivity in alkenes hydroformylation over rhodium ». Journal of Molecular Catalysis A : Chemical 315, no 2 (15 janvier 2010) : 148–54. http://dx.doi.org/10.1016/j.molcata.2009.06.023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Sharma, Sumeet K., et Raksh V. Jasra. « ChemInform Abstract : Aqueous Phase Catalytic Hydroformylation Reactions of Alkenes ». ChemInform 46, no 21 (mai 2015) : no. http://dx.doi.org/10.1002/chin.201521286.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Buhling, Armin, Paul C. J. Kamer et Piet W. N. M. van Leeuwen. « Rhodium catalysed hydroformylation of higher alkenes using amphiphilic ligands ». Journal of Molecular Catalysis A : Chemical 98, no 2 (mai 1995) : 69–80. http://dx.doi.org/10.1016/1381-1169(95)00014-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Fuchs, Evelyn, Manfred Keller et Bernhard Breit. « Phosphabarrelenes as Ligands in Rhodium-Catalyzed Hydroformylation of Internal Alkenes Essentially Free of Alkene Isomerization ». Chemistry - A European Journal 12, no 26 (6 septembre 2006) : 6930–39. http://dx.doi.org/10.1002/chem.200600180.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Desset, Simon L., David J. Cole-Hamilton et Douglas F. Foster. « Aqueous-biphasic hydroformylation of higher alkenes promoted by alkylimidazolium salts ». Chemical Communications, no 19 (2007) : 1933. http://dx.doi.org/10.1039/b618785d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Wildt, Julia, Anna C. Brezny et Clark R. Landis. « Backbone-Modified Bisdiazaphospholanes for Regioselective Rhodium-Catalyzed Hydroformylation of Alkenes ». Organometallics 36, no 16 (16 août 2017) : 3142–51. http://dx.doi.org/10.1021/acs.organomet.7b00475.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Deng, Yuchao, Hui Wang, Yuhan Sun et Xiao Wang. « Principles and Applications of Enantioselective Hydroformylation of Terminal Disubstituted Alkenes ». ACS Catalysis 5, no 11 (20 octobre 2015) : 6828–37. http://dx.doi.org/10.1021/acscatal.5b01300.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Rosales, Merlin, Angel González, Beatríz González, Cristhina Moratinos, Homero Pérez, Johán Urdaneta et Roberto A. Sánchez-Delgado. « Hydroformylation of alkenes with paraformaldehyde catalyzed by rhodium–phosphine complexes ». Journal of Organometallic Chemistry 690, no 12 (juin 2005) : 3095–98. http://dx.doi.org/10.1016/j.jorganchem.2005.03.032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Yu, Zhiyong, Meredith S. Eno, Alexandra H. Annis et James P. Morken. « Enantioselective Hydroformylation of 1-Alkenes with Commercial Ph-BPE Ligand ». Organic Letters 17, no 13 (19 juin 2015) : 3264–67. http://dx.doi.org/10.1021/acs.orglett.5b01421.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Polas, Anastasios, James D. E. T. Wilton-Ely, Alexandra M. Z. Slawin, Douglas F. Foster, Petrus J. Steynberg, Michael J. Green et David J. Cole-Hamilton. « Limonene-derived phosphines in the cobalt-catalysed hydroformylation of alkenes ». Dalton Transactions, no 24 (2003) : 4669. http://dx.doi.org/10.1039/b310233e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Pedrós, Marta Giménez, Anna M. Masdeu-Bultó, Jerome Bayardon et Denis Sinou. « Hydroformylation of Alkenes with Rhodium Catalyst in Supercritical Carbon Dioxide ». Catalysis Letters 107, no 3-4 (mars 2006) : 205–8. http://dx.doi.org/10.1007/s10562-005-0005-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Yamane, Motoki, Noriaki Yukimura, Hiroshi Ishiai et Koichi Narasaka. « Hydroformylation of Monosubstituted Alkenes Catalyzed by W–Rh Bimetallic Complex ». Chemistry Letters 35, no 5 (mai 2006) : 540–41. http://dx.doi.org/10.1246/cl.2006.540.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Kamer, Paul C. J., Annemiek van Rooy, Gerard C. Schoemaker et Piet W. N. M. van Leeuwen. « In situ mechanistic studies in rhodium catalyzed hydroformylation of alkenes ». Coordination Chemistry Reviews 248, no 21-24 (décembre 2004) : 2409–24. http://dx.doi.org/10.1016/j.ccr.2004.06.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Illesinghe, Jayamini, Eva M. Campi, W. Roy Jackson et Andrea J. Robinson. « Synthesis of Nitrogen Heterocycles by Rhodium-Catalyzed Hydroformylation of Polymer-Attached Amino Alkenes with Syngas ». Australian Journal of Chemistry 57, no 6 (2004) : 531. http://dx.doi.org/10.1071/ch03269.

Texte intégral
Résumé :
Rhodium(I) phosphite catalyzed hydroaminomethylation of resin-tethered amino alkenes with H2/CO gives moderate to good yields of five-, eight-, ten-, and thirteen-membered heterocycles. Competing hydrogenation, dimerization, or polymerization reactions were not observed using this methodology.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Obrecht, Lorenz, Paul C. J. Kamer et Wouter Laan. « Alternative approaches for the aqueous–organic biphasic hydroformylation of higher alkenes ». Catal. Sci. Technol. 3, no 3 (2013) : 541–51. http://dx.doi.org/10.1039/c2cy20538f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Dingwall, Paul, José A. Fuentes, Luke Crawford, Alexandra M. Z. Slawin, Michael Bühl et Matthew L. Clarke. « Understanding a Hydroformylation Catalyst that Produces Branched Aldehydes from Alkyl Alkenes ». Journal of the American Chemical Society 139, no 44 (25 octobre 2017) : 15921–32. http://dx.doi.org/10.1021/jacs.7b09164.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie