Articles de revues sur le sujet « Hydraulic Power Take-Off »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Hydraulic Power Take-Off.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Hydraulic Power Take-Off ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

IMAI, Yasutaka, Shuichi NAGATA, Tengen Murakami, Ryotarou INOUE et Yuki KODAMA. « English Hydraulic power-Take-Off ». Proceedings of Conference of Kyushu Branch 2018.71 (2018) : A21. http://dx.doi.org/10.1299/jsmekyushu.2018.71.a21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Huang, Qitao, Peng Wang, Yudong Liu et Bowen Li. « Modeling and Simulation of Hydraulic Power Take-Off Based on AQWA ». Energies 15, no 11 (26 mai 2022) : 3918. http://dx.doi.org/10.3390/en15113918.

Texte intégral
Résumé :
The AQWA software is often used to perform hydrodynamic analysis, and it is highly convenient for performing frequency domain simulations of Pelamis-like wave energy converters. However, hydraulic power take-off (PTO) must be simplified to a linear damping model or a Coulomb torque model when performing a time domain simulation. Although these simulation methods can reduce the computational complexity, they may not accurately reflect the energy capture characteristics of the hydraulic PTO. By analyzing system factors such as the flow and pressure of each branch of the hydraulic PTO, the output torque of the hydraulic cylinder to the buoy, and the electromagnetic torque of the generator, a relatively complete hydraulic PTO model is obtained, and the model is applied to AQWA using the FORTRAN language. Comparing and analyzing the simulation results of the linear damping model, the Coulomb torque model, and the hydraulic PTO, we found that the simulation results obtained by the linear damping model are quite different from those of the hydraulic PTO, while the torque characteristics, kinematic characteristics and energy capture characteristics of the Coulomb torque model are closer to those of the hydraulic PTO model. Therefore, it is more appropriate to simplify hydraulic PTO to a Coulomb torque model based on AQWA.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Velichkova, R., M. Pushkarov, R. A. Angelova, I. Simova, D. Markov, I. Denev et P. Stankov. « Hydraulic power take off system for wave energy utilization ». IOP Conference Series : Materials Science and Engineering 1032 (21 janvier 2021) : 012030. http://dx.doi.org/10.1088/1757-899x/1032/1/012030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhang, Dahai, Wei Li, You Ying, Haitao Zhao, Yonggang Lin et Jingwei Bao. « Wave energy converter of inverse pendulum with double action power take off ». Proceedings of the Institution of Mechanical Engineers, Part C : Journal of Mechanical Engineering Science 227, no 11 (31 janvier 2013) : 2416–27. http://dx.doi.org/10.1177/0954406213475760.

Texte intégral
Résumé :
This article describes a double action hydraulic power take off for a wave energy converter of inverse pendulum. The power take off converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the double action power take off and its control are critical to the magnitude and the continuity of the generated power. The interaction between the power take off behavior and the wave energy converter’s hydrodynamic characteristics is complex, therefore a time domain simulation study is presented in which both parts are included. The power take off is modeled using AMESim®, and the hydrodynamic equations are implemented in MATLAB®; simulation is used to predict the behavior of the complete system. The simulation results show that the design of the double action hydraulic power take off for wave energy converter of inverse pendulum is entirely feasibility and its superiority has been verified by the preliminary experiments, especially compared with the existing single action power take off system.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Xu, Jianan, Yansong Yang, Yantao Hu, Tao Xu et Yong Zhan. « MPPT Control of Hydraulic Power Take-Off for Wave Energy Converter on Artificial Breakwater ». Journal of Marine Science and Engineering 8, no 5 (26 avril 2020) : 304. http://dx.doi.org/10.3390/jmse8050304.

Texte intégral
Résumé :
Wave energy is a renewable energy source that is green, clean and has huge reserves. In order to develop wave energy resources, an oscillating buoy Wave Energy Converter (WEC) device based on the artificial breakwater is presented in this paper. In order to effectively vent the gas in the hydraulic PTO and to improve the active control capability of the PTO system to guarantee the safety performance of the system under high sea conditions, a hydraulic PTO with an active control circuit is designed. Additionally, for the Power Take-Off (PTO) system, there is a optimal damping point under different sea conditions for PTO system, so the PTO can be controlled by the Maximum-Power-Point-Tracking (MPPT) control algorithms to improve the generated power of the system. At present, the MPPT control algorithms for wave energy are mainly used to control the load of generator. However, a fixed-load storage battery is used for the load of the generator in this paper. Additionally, an MPPT control taken at a hydraulic PTO system is executed to improve the power generated by hydraulic PTO under different sea conditions effectively in this paper. The MPPT control based on the hydraulic system is conducted by controlling the displacement of hydraulic motor to achieve the optimal damping point tracking control. The control flow of the MPPT algorithm is provided. The variable step hill-climbing method is used in MPPT control algorithm in which the big step can reduce the time of tracking and the small step can increase the accuracy of MPPT control algorithm. Due to the slow stability of the hydraulic system, a filter method for hydraulic PTO power is used. In addition, the hydraulic PTO system and MPPT control are verified to be feasible with the simulation. Additionally, MPPT control based on hydraulic variable motor is easier to carry out in practical applications than the traditional control of resistance. Finally, the simulation results demonstrate that it is an effective power control strategy for hydraulic PTO system to improve the generated power.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Niu, Yubo, Xingyuan Gu, Xuhui Yue, Yang Zheng, Peijie He et Qijuan Chen. « Research on Thermodynamic Characteristics of Hydraulic Power Take-Off System in Wave Energy Converter ». Energies 15, no 4 (14 février 2022) : 1373. http://dx.doi.org/10.3390/en15041373.

Texte intégral
Résumé :
Hydraulic power-take-off (PTO) systems which utilize high-pressure oil circuits to transmit energy are widely applied in wave energy generation. The properties of hydraulic oil are significantly influenced by environmental conditions, and its dynamic viscosity is sensitive to temperature, especially in relatively low-temperature cases. This paper studies the characteristics of the hydraulic PTO when started in different temperature conditions via numerical analysis and experimental verification. An improved numerical model of the hydraulic PTO system is proposed, in which the effects of temperature on the hydraulic oil viscosity and hydraulic motor efficiency are quantitatively investigated, and consequently, the thermal-hydraulic characteristics can be sufficiently considered. The performances of the hydraulic PTO in start-up processes with different initial temperatures and in long term operation are assessed. The results show that the presented model can reasonably describe the hydraulic PTO characteristics. The efficiency of hydraulic PTO degrades when it starts at low temperatures. The efficiency increases in relatively high temperature, while larger fluctuations of the flow rate and output power are observed. This study can provide guidance for enhancing the efficiency and consistency of hydraulic PTO operating in actual sea conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jusoh, Mohd Afifi, Mohd Zamri Ibrahim, Muhamad Zalani Daud, Aliashim Albani et Zulkifli Mohd Yusop. « Hydraulic Power Take-Off Concepts for Wave Energy Conversion System : A Review ». Energies 12, no 23 (27 novembre 2019) : 4510. http://dx.doi.org/10.3390/en12234510.

Texte intégral
Résumé :
Ocean wave energy is one of the most abundant energy sources in the world. There is a wide variety of wave energy conversion systems that have been designed and developed, resulting from the different ways of ocean wave energy absorption and also depending on the location characteristics. This paper reviews and analyses the concepts of hydraulic power take-off (PTO) system used in various types of wave energy conversion systems so that it can be a useful reference to researchers, engineers and inventors. This paper also reviews the control mechanisms of the hydraulic PTO system in order to optimise the energy harvested from the ocean waves. Finally, the benefits and challenges of the hydraulic PTO system are discussed in this paper.
Styles APA, Harvard, Vancouver, ISO, etc.
8

R. S. Thomas et D. R. Buckmaster. « DEVELOPMENT OF A COMPUTER-CONTROLLED, HYDRAULIC, POWER TAKE-OFF (PTO) SYSTEM ». Transactions of the ASAE 48, no 5 (2005) : 1669–75. http://dx.doi.org/10.13031/2013.19995.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Gaspar, José F., Peter K. Stansby, Miguel Calvário et C. Guedes Soares. « Hydraulic Power Take-Off concept for the M4 Wave Energy Converter ». Applied Ocean Research 106 (janvier 2021) : 102462. http://dx.doi.org/10.1016/j.apor.2020.102462.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Jusoh, Mohd Afifi, Zulkifli Mohd Yusop, Aliashim Albani, Muhamad Zalani Daud et Mohd Zamri Ibrahim. « Investigations of Hydraulic Power Take-Off Unit Parameters Effects on the Performance of the WAB-WECs in the Different Irregular Sea States ». Journal of Marine Science and Engineering 9, no 8 (20 août 2021) : 897. http://dx.doi.org/10.3390/jmse9080897.

Texte intégral
Résumé :
Hydraulic power take-off (HPTO) is considered to be one of the most effective power take-off schemes for wave energy conversion systems (WECs). The HPTO unit can be constructed using standard hydraulic components that are readily available from the hydraulic industry market. However, the construction and operation of the HPTO unit are more complex rather than other types of power take-off, as many components parameters need to be considered during the optimization. Generator damping, hydraulic motor displacement, hydraulic cylinder and accumulator size are among the important parameters that influence the HPTO performance in generating usable electricity. Therefore, the influence of these parameters on the amount of generated electrical power from the HPTO unit was investigated in the present study. A simulation study was conducted using MATLAB/Simulink software, in which a complete model of WECs was developed using the Simscape fluids toolbox. During the simulation, each parameters study of the HPTO unit were separately manipulated to investigate its effects on the WECs performance in five different sea states. Finally, the simulated result of the effect of HPTO parameters on the amount of generated electrical power from the HPTO unit in different sea states is given and discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Andersen, Niklas Enoch, Jakob Blåbjerg Mathiasen, Maja Grankær Carøe, Chen Chen, Christian-Emil Helver, Allan Lynggaard Ludvigsen, Nis Frededal Ebsen et Anders Hedegaard Hansen. « Optimisation of Control Algorithm for Hydraulic Power Take-Off System in Wave Energy Converter ». Energies 15, no 19 (27 septembre 2022) : 7084. http://dx.doi.org/10.3390/en15197084.

Texte intégral
Résumé :
Wave energy converters are still a maturing technology and, as such, still face a series of challenges before they can compete with already-established technologies. One of these challenges is optimising the amount of energy extracted from the waves and delivered to the power grid. This study investigates the possibility of increasing the energy output of the existing hydraulic power take-off system of a wave energy converter made by Floating Power Plant during small-scale testing of their hybrid wind and wave energy platform. This system consists of a floater arm that rotates an axle when displaced by the waves. When the axle rotates, two hydraulic cylinders are actuated, displacing oil to run through a hydraulic motor driving an electric generator. The energy extraction is controlled by implementing a control algorithm on a series of on/off valves, which decouples the two hydraulic cylinders driving the hydraulic motor, and by varying the applied torque from the generator to match the wave conditions. Finally, it is investigated whether adding high-pressure pathways to the cylinder pressure chambers is beneficial for maximum power point tracking with reactive control. The analysis is conducted through a numerical model developed in Simulink and verified by comparison to the experimental setup supplied by Floating Power Plant. The study finds that a continuous valve switching strategy is optimal compared to end-point switching and reactive control with high-pressure pathways.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Nam, Ji Woo, Yong Jun Sung et Seong Wook Cho. « Effective Mooring Rope Tension in Mechanical and Hydraulic Power Take-Off of Wave Energy Converter ». Sustainability 13, no 17 (31 août 2021) : 9803. http://dx.doi.org/10.3390/su13179803.

Texte intégral
Résumé :
The InWave wave energy converter (WEC), which is three-tether WEC type, absorbs wave energy via moored cylindrical buoys with three ropes connected to a terrestrial power take-off (PTO) through a subsea pulley. In this study, a simulation study was conducted to select a suitable PTO when designing a three-tether WEC. The mechanical PTO transfers energy from the buoy to the generator using a gearbox, whereas the hydraulic PTO uses a hydraulic pump, an accumulator, and a hydraulic motor to convert mechanical energy into electrical energy. The hydraulic PTO has a lower energy conversion efficiency than that of the mechanical PTO owing to losses resulting from pipe friction and the individual efficiencies of the hydraulic pumps and motors. However, the efficiencies mentioned above are not the efficiency of the whole system. The efficiency of the whole system should be analyzed considering the tension of the rope and the efficiency of the generator. In this study, the energy conversion efficiencies of the InWave WEC installed the mechanical and hydraulic PTO devices are compared, and their behaviors are analyzed through numerical simulations. The mechanics of mechanical and hydraulic PTO applied to InWave are mathematically expressed, and the issues of the elements constituting the PTO are explained. Finally, factors to consider for PTO selection are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Antolín-Urbaneja, J. C., J. Lasa, P. Estensoro, I. Cabanes et M. Marcos. « Innovative Hydraulic Power Take-Off Construction and Performance Tests for Wave Energy Conversion ». Applied Mechanics and Materials 432 (septembre 2013) : 316–23. http://dx.doi.org/10.4028/www.scientific.net/amm.432.316.

Texte intégral
Résumé :
This document describes and demonstrates the features of a new innovative hydraulic Power take-Off (PTO) to be used for Wave Energy Conversion. This device is able to transform low frequency oscillating movement into a continuous high frequency angular speed, absorbing high fluctuated torque at the input shaft, which can reach up to 8000Nm. Moreover, the major breakthrough of this device is that it can control the braking torque through the modification of some geometrical parameters, L and R, and through the activation of more than one hydraulic cylinder together with the pressure. The output shaft of the PTO is able to rotate at different continuous rated speed through the actuation on a specific control valve at the inlet of the hydraulic motor. Tests to check the behavior of the PTO related to the smoothening of the power output and concerning the time needed to increase the high pressure and the time available after the accumulation of some quantity of energy in different initial conditions are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Roh, Chan. « Maximum Power Control Algorithm for Power Take-Off System Based on Hydraulic System for Floating Wave Energy Converters ». Journal of Marine Science and Engineering 10, no 5 (29 avril 2022) : 603. http://dx.doi.org/10.3390/jmse10050603.

Texte intégral
Résumé :
In this study, a hydraulic system generator power converter was modeled to verify the performance of a hydraulic-based power take-off (PTO) system. Moreover, the characteristics and output performance of the PTO system were analyzed with various load control algorithms applied for maximum power control. The simulation performance was verified through a comparison with actual sea test results. Unlike previous studies on hydraulic-based PTO system control for input power performance, the performance of a hydraulic-based PTO system was analyzed through electrical load control in this study. The electrical load control was analyzed by applying a speed control algorithm based on the perturb and observe algorithm and an optimal torque control algorithm. A load control algorithm suitable for maximum power control of the PTO system was proposed by analyzing the characteristics and power generation performance of the system according to the control variables of each algorithm. The proposed optimal torque control algorithm proved to be suitable for maximum power control of the considered PTO system.
Styles APA, Harvard, Vancouver, ISO, etc.
15

CHEN, Qijuan. « Research on Hydraulic Power Take-off System of Resonant Wave Generation Device ». Journal of Mechanical Engineering 53, no 14 (2017) : 209. http://dx.doi.org/10.3901/jme.2017.14.209.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Calvário, M., J. F. Gaspar, M. Kamarlouei, T. S. Hallak et C. Guedes Soares. « Oil-hydraulic power take-off concept for an oscillating wave surge converter ». Renewable Energy 159 (octobre 2020) : 1297–309. http://dx.doi.org/10.1016/j.renene.2020.06.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Mueller, M. A., et N. J. Baker. « Direct drive electrical power take-off for offshore marine energy converters ». Proceedings of the Institution of Mechanical Engineers, Part A : Journal of Power and Energy 219, no 3 (1 mai 2005) : 223–34. http://dx.doi.org/10.1243/095765005x7574.

Texte intégral
Résumé :
This paper investigates the issues associated with converting the energy produced by marine renewable energy converters, namely wave and tidal stream devices, into electricity using direct drive electrical power take-off, without use of complex pneumatic, hydraulic or other mechanical linkages. In order to demonstrate the issues, two alternative topologies of linear electrical machines are investigated: the linear vernier hybrid permanent magnet machine and the air-cored tubular permanent magnet machine. The electrical characteristics of these machines are described and compared in the context of mechanical integration. Potential solutions to the issues of sealing, corrosion and lubrication are discussed taking into account the electrical properties of the two topologies.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Sinha, Ashank, D. Karmakar et C. Guedes Soares. « Shallow water effects on wave energy converters with hydraulic power take-off system ». International Journal of Ocean and Climate Systems 7, no 3 (21 juin 2016) : 108–17. http://dx.doi.org/10.1177/1759313116649966.

Texte intégral
Résumé :
The effect of water depth on the power absorption by a single heaving point absorber wave energy converter, attached to a hydraulic power take-off system, is simulated and analysed. The wave energy flux for changing water depths is presented and the study is carried out at a location in the north-west Portuguese coast, favourable for wave power generation. This analysis is based on a procedure to modify the wave spectrum as the water depth reduces, namely, the TMA spectrum (Transformation spectrum). The present study deals with the effect of water depth on the spectral shape and significant wave heights. The reactive control strategy, which includes an external damping coefficient and a negative spring term, is used to maximize power absorption by the wave energy converter. The presented work can be used for making decisions regarding the best water depth for the installation of point absorber wave energy converters in the Portuguese nearshore.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Drabant, Š., M. Bolla, A. Žikla, I. Petranský et J. Ďuďák. « Testing device with opened hydrostatic circuit for dynamic loading of the tractor engine by power take off shaft ». Research in Agricultural Engineering 51, No. 3 (7 février 2012) : 91–98. http://dx.doi.org/10.17221/4909-rae.

Texte intégral
Résumé :
The developed loading device with opened hydrostatic circuit for measurement of speed and dynamic characteristics of the tractor engine by power take off is presented. This loading device may also be used as a portable type for field measurement. At present for development of these loading devices controlled hydrogenerators and electro-hydraulic proportional pressure valves directed by computer may by used to adjust geometrical volume of the hydrogenerator from zero to maximum value. There is a possibility to built these devices which consist of one hydrogenerator and one by-pass valve for the maximum power of internal combustion engine 420 kW which is sufficient from the point of view of practical need. Thus optional loading regime may be used according to the tractor engine horsepower to achieve the required accuracy of measurement.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Zou, Shangyan, et Ossama Abdelkhalik. « Control of Wave Energy Converters with Discrete Displacement Hydraulic Power Take-Off Units ». Journal of Marine Science and Engineering 6, no 2 (2 avril 2018) : 31. http://dx.doi.org/10.3390/jmse6020031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Cargo, C. J., A. J. Hillis et A. R. Plummer. « Strategies for active tuning of Wave Energy Converter hydraulic power take-off mechanisms ». Renewable Energy 94 (août 2016) : 32–47. http://dx.doi.org/10.1016/j.renene.2016.03.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Hansen, Rico, Morten Kramer et Enrique Vidal. « Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter ». Energies 6, no 8 (7 août 2013) : 4001–44. http://dx.doi.org/10.3390/en6084001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Gaspar, José F., Miguel Calvário, Mojtaba Kamarlouei et C. Guedes Soares. « Design tradeoffs of an oil-hydraulic power take-off for wave energy converters ». Renewable Energy 129 (décembre 2018) : 245–59. http://dx.doi.org/10.1016/j.renene.2018.05.092.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Bjarte-Larsson, T., et J. Falnes. « Laboratory experiment on heaving body with hydraulic power take-off and latching control ». Ocean Engineering 33, no 7 (mai 2006) : 847–77. http://dx.doi.org/10.1016/j.oceaneng.2005.07.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Amini, Erfan, Hossein Mehdipour, Emilio Faraggiana, Danial Golbaz, Sevda Mozaffari, Giovanni Bracco et Mehdi Neshat. « Optimization of hydraulic power take-off system settings for point absorber wave energy converter ». Renewable Energy 194 (juillet 2022) : 938–54. http://dx.doi.org/10.1016/j.renene.2022.05.164.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Beirão, Pedro, et Cândida Malça. « Hydraulic Power Take-off and Buoy Geometries Charac-terisation for a Wave Energy Converter ». Energy and Power Engineering 05, no 04 (2013) : 72–77. http://dx.doi.org/10.4236/epe.2013.54b014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Ricci, P., J. Lopez, M. Santos, P. Ruiz-Minguela, J. L. Villate, F. Salcedo et A. F. deO Falcão. « Control strategies for a wave energy converter connected to a hydraulic power take-off ». IET Renewable Power Generation 5, no 3 (2011) : 234. http://dx.doi.org/10.1049/iet-rpg.2009.0197.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Gaspar, José F., Miguel Calvário, Mojtaba Kamarlouei et C. Guedes Soares. « Power take-off concept for wave energy converters based on oil-hydraulic transformer units ». Renewable Energy 86 (février 2016) : 1232–46. http://dx.doi.org/10.1016/j.renene.2015.09.035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Lasa, Joseba, Juan Carlos Antolin, Carlos Angulo, Patxi Estensoro, Maider Santos et Pierpaolo Ricci. « Design, Construction and Testing of a Hydraulic Power Take-Off for Wave Energy Converters ». Energies 5, no 6 (20 juin 2012) : 2030–52. http://dx.doi.org/10.3390/en5062030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Lasa, Joseba, Juan Carlos Antolin, Carlos Angulo, Patxi Estensoro, Maider Santos et Pierpaolo Ricci. « Design, Construction and Testing of a Hydraulic Power Take-Off for Wave Energy Converters ». Energies 5, no 6 (20 juin 2012) : 2060–82. http://dx.doi.org/10.3390/en5062060.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Kurniawan, Adi, Eilif Pedersen et Torgeir Moan. « Bond graph modelling of a wave energy conversion system with hydraulic power take-off ». Renewable Energy 38, no 1 (février 2012) : 234–44. http://dx.doi.org/10.1016/j.renene.2011.07.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Liu, Changhai, Zhixue Zhao, Min Hu, Wenzhi Gao, Jian Chen, Hao Yan, Yishang Zeng et al. « A novel discrete control for wave energy converters with a hydraulic power take-off system ». Ocean Engineering 249 (avril 2022) : 110887. http://dx.doi.org/10.1016/j.oceaneng.2022.110887.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Qijuan, Chen, Jiang Wen, Yue Xuhui, Geng Dazhou, Yan Donglin et Wang Weiyu. « Dynamic performance of key components for hydraulic power take‐off of the wave energy converter ». IET Renewable Power Generation 13, no 15 (29 octobre 2019) : 2929–38. http://dx.doi.org/10.1049/iet-rpg.2018.6097.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Zaseck, Kevin, Aristotelis Babajimopoulos, Matthew Brusstar, Zoran Filipi et Dennis N. Assanis. « Design and Modeling of a Novel Internal Combustion Engine with Direct Hydraulic Power Take-off ». SAE International Journal of Alternative Powertrains 2, no 1 (8 avril 2013) : 204–16. http://dx.doi.org/10.4271/2013-01-1733.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Chen, Qijuan, Xuhui Yue, Dazhou Geng, Donglin Yan et Wen Jiang. « Integrated characteristic curves of the constant-pressure hydraulic power take-off in wave energy conversion ». International Journal of Electrical Power & ; Energy Systems 117 (mai 2020) : 105730. http://dx.doi.org/10.1016/j.ijepes.2019.105730.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Liu, Changhai, Min Hu, Zhixue Zhao, Yishan Zeng, Wenzhi Gao, Jian Chen, Hao Yan et al. « Latching control of a raft-type wave energy converter with a hydraulic power take-off system ». Ocean Engineering 236 (septembre 2021) : 109512. http://dx.doi.org/10.1016/j.oceaneng.2021.109512.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Gaspar, José F., Mojtaba Kamarlouei, Ashank Sinha, Haitong Xu, Miguel Calvário, François-Xavier Faÿ, Eider Robles et C. Guedes Soares. « Speed control of oil-hydraulic power take-off system for oscillating body type wave energy converters ». Renewable Energy 97 (novembre 2016) : 769–83. http://dx.doi.org/10.1016/j.renene.2016.06.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Jusoh, M. A., M. Z. Ibrahim, M. Z. Daud, Z. M. Yusop, A. Albani, S. J. Rahman et S. Mohad. « Parameters estimation of hydraulic power take-off system for wave energy conversion system using genetic algorithm ». IOP Conference Series : Earth and Environmental Science 463 (7 avril 2020) : 012129. http://dx.doi.org/10.1088/1755-1315/463/1/012129.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Antolín-Urbaneja, Juan, Alain Cortés, Itziar Cabanes, Patxi Estensoro, Joseba Lasa et Marga Marcos. « Modeling Innovative Power Take-Off Based on Double-Acting Hydraulic Cylinders Array for Wave Energy Conversion ». Energies 8, no 3 (20 mars 2015) : 2230–67. http://dx.doi.org/10.3390/en8032230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Liu, ChangHai, QingJun Yang et Gang Bao. « Performance investigation of a two-raft-type wave energy converter with hydraulic power take-off unit ». Applied Ocean Research 62 (janvier 2017) : 139–55. http://dx.doi.org/10.1016/j.apor.2016.12.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Jusoh, Mohd Afifi, Mohd Zamri Ibrahim, Muhamad Zalani Daud, Zulkifli Mohd Yusop et Aliashim Albani. « An Estimation of Hydraulic Power Take-off Unit Parameters for Wave Energy Converter Device Using Non-Evolutionary NLPQL and Evolutionary GA Approaches ». Energies 14, no 1 (25 décembre 2020) : 79. http://dx.doi.org/10.3390/en14010079.

Texte intégral
Résumé :
This study is concerned with the application of two major kinds of optimisation algorithms on the hydraulic power take-off (HPTO) model for the wave energy converters (WECs). In general, the HPTO unit’s performance depends on the configuration of its parameters such as hydraulic cylinder size, hydraulic accumulator capacity and pre-charge pressure and hydraulic motor displacement. Conventionally, the optimal parameters of the HPTO unit need to be manually estimated by repeating setting the parameters’ values during the simulation process. However, such an estimation method can easily be exposed to human error and would subsequently result in an inaccurate selection of HPTO parameters for WECs. Therefore, an effective approach of using the non-evolutionary Non-Linear Programming by Quadratic Lagrangian (NLPQL) and evolutionary Genetic Algorithm (GA) algorithms for determining the optimal HPTO parameters was explored in the present study. A simulation–optimisation of the HPTO model was performed in the MATLAB/Simulink environment. A complete WECs model was built using Simscape Fluids toolbox in MATLAB/Simulink. The actual specifications of hydraulic components from the manufacturer were used during the simulation study. The simulation results showed that the performance of optimal HPTO units optimised by NLPQL and GA approaches have significantly improved up to 96% and 97%, respectively, in regular wave conditions. The results also showed that both optimal HPTO units were capable of generating electricity up to 62% and 77%, respectively, of their rated capacity in irregular wave circumstances.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Liu, Changhai, Qingjun Yang et Gang Bao. « Influence of hydraulic power take-off unit parameters on power capture ability of a two-raft-type wave energy converter ». Ocean Engineering 150 (février 2018) : 69–80. http://dx.doi.org/10.1016/j.oceaneng.2017.12.063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Kamarlouei, Mojtaba, J. F. Gaspar et C. Guedes Soares. « Optimal design of an axisymmetric two-body wave energy converter with translational hydraulic power take-off system ». Renewable Energy 183 (janvier 2022) : 586–600. http://dx.doi.org/10.1016/j.renene.2021.10.090.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

de O. Falcão, António F. « Modelling and control of oscillating-body wave energy converters with hydraulic power take-off and gas accumulator ». Ocean Engineering 34, no 14-15 (octobre 2007) : 2021–32. http://dx.doi.org/10.1016/j.oceaneng.2007.02.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Xuhui, Yue, Chen Qijuan, Wang Zenghui, Geng Dazhou, Yan Donglin, Jiang Wen et Wang Weiyu. « A novel nonlinear state space model for the hydraulic power take-off of a wave energy converter ». Energy 180 (août 2019) : 465–79. http://dx.doi.org/10.1016/j.energy.2019.05.095.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Zhang, Da-hai, Wei Li, Hai-tao Zhao, Jing-wei Bao et Yong-gang Lin. « Design of a hydraulic power take-off system for the wave energy device with an inverse pendulum ». China Ocean Engineering 28, no 2 (avril 2014) : 283–92. http://dx.doi.org/10.1007/s13344-014-0023-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Liu, Changhai, Min Hu, Wenzhi Gao, Jian Chen, Yishan Zeng, Daozhu Wei, Qingjun Yang et Gang Bao. « A high-precise model for the hydraulic power take-off of a raft-type wave energy converter ». Energy 215 (janvier 2021) : 119107. http://dx.doi.org/10.1016/j.energy.2020.119107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Verao Fernandez, Gael, Vasiliki Stratigaki, Nicolas Quartier et Peter Troch. « Influence of Power Take-Off Modelling on the Far-Field Effects of Wave Energy Converter Farms ». Water 13, no 4 (6 février 2021) : 429. http://dx.doi.org/10.3390/w13040429.

Texte intégral
Résumé :
The study of the potential impact of wave energy converter (WEC) farms on the surrounding wave field at long distances from the WEC farm location (also know as “far field” effects) has been a topic of great interest in the past decade. Typically, “far-field” effects have been studied using phase average or phase resolving numerical models using a parametrization of the WEC power absorption using wave transmission coefficients. Most recent studies have focused on using coupled models between a wave-structure interaction solver and a wave-propagation model, which offer a more complex and accurate representation of the WEC hydrodynamics and PTO behaviour. The difference in the results between the two aforementioned approaches has not been studied yet, nor how different ways of modelling the PTO system can affect wave propagation in the lee of the WEC farm. The Coastal Engineering Research Group of Ghent University has developed both a parameterized model using the sponge layer technique in the mild slope wave propagation model MILDwave and a coupled model MILDwave-NEMOH (NEMOH is a boundary element method-based wave-structure interaction solver), for studying the “far-field” effects of WEC farms. The objective of the present study is to perform a comparison between both numerical approaches in terms of performance for obtaining the “far-field” effects of two WEC farms. Results are given for a series of regular wave conditions, demonstrating a better accuracy of the MILDwave-NEMOH coupled model in obtaining the wave disturbance coefficient (Kd) values around the considered WEC farms. Subsequently, the analysis is extended to study the influence of the PTO system modelling technique on the “far-field” effects by considering: (i) a linear optimal, (ii) a linear sub-optimal and (iii) a non-linear hydraulic PTO system. It is shown that modelling a linear optimal PTO system can lead to an unrealistic overestimation of the WEC motions than can heavily affect the wave height at a large distance in the lee of the WEC farm. On the contrary, modelling of a sub-optimal PTO system and of a hydraulic PTO system leads to a similar, yet reduced impact on the “far-field” effects on wave height. The comparison of the PTO systems’ modelling technique shows that when using coupled models, it is necessary to carefully model the WEC hydrodynamics and PTO behaviour as they can introduce substantial inaccuracies into the WECs’ motions and the WEC farm “far-field” effects.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Henderson, Ross. « Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter ». Renewable Energy 31, no 2 (février 2006) : 271–83. http://dx.doi.org/10.1016/j.renene.2005.08.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Cargo, CJ, AJ Hillis et AR Plummer. « Optimisation and control of a hydraulic power take-off unit for a wave energy converter in irregular waves ». Proceedings of the Institution of Mechanical Engineers, Part A : Journal of Power and Energy 228, no 4 (27 janvier 2014) : 462–79. http://dx.doi.org/10.1177/0957650913519619.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie