Littérature scientifique sur le sujet « Hybrid Heterostructure Solar Cells »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Hybrid Heterostructure Solar Cells ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Hybrid Heterostructure Solar Cells"

1

Shvarts M. Z., Andreeva A. V., Andronikov D. A., Emtsev K. V., Larionov V. R., Nakhimovich M. V., Pokrovskiy P. V., Sadchikov N. A., Yakovlev S. A. et Malevskiy D. A. « Hybrid concentrator-planar photovoltaic module with heterostructure solar cells ». Technical Physics Letters 49, no 2 (2023) : 46. http://dx.doi.org/10.21883/tpl.2023.02.55371.19438.

Texte intégral
Résumé :
The paper presents a promising solution for photovoltaic modules that provides overcoming the main conceptual limitation for the concentrator concept in photovoltaics --- the impossibility to convert diffused (scattered) solar radiation coming to the panel of sunlight concentrators. The design of a hybrid concentrator-planar photovoltaic module based on heterostructure solar cells: A3B5 triple-junction and Si-HJT is presented. The results of initial outdoor studies of the module output characteristics are discussed and estimates of its energy efficiency are given. Keywords: hybrid concentrator-planar photovoltaic module, multijunction solar cell, Si-HJT planar photoconverter, diffusely scattered radiation.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yang, Ning, Cheng Zhu, Yihua Chen, Huachao Zai, Chenyue Wang, Xi Wang, Hao Wang et al. « An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation ». Energy & ; Environmental Science 13, no 11 (2020) : 4344–52. http://dx.doi.org/10.1039/d0ee01736a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Chonsut, Teantong, Sirapat Pratontep, Anusit Keawprajak, Pisist Kumnorkaew et Navaphun Kayunkid. « Improvement of Efficiency of Polymer-Zinc Oxide Hybrid Solar Cells Prepared by Rapid Convective Deposition ». Applied Mechanics and Materials 848 (juillet 2016) : 7–10. http://dx.doi.org/10.4028/www.scientific.net/amm.848.7.

Texte intégral
Résumé :
The aim of this research is to study improvement of power conversion efficiency (PCE) of organic-inorganic hybrid bulk heterostructure solar cell prepared by rapid convective deposition as a function of concentration of zinc oxide additive. The structure of hybrid solar cell used in this research is ITO/ZnO/P3HT:PC70BM:ZnO(nanoparticles)/MoO3/Au. By adding 5 mg/ml of ZnO nanoparticles in the active layer (P3HT:PC70BM), the PCE was increased from 0.46 to 1.09%. In order to reveal the origin of improving efficiency, surface morphology and optical properties of active layers were investigated by atomic force microscopy (AFM) and UV-Visible spectroscopy, respectively. The results clearly indicate that the enhancement of solar cell efficiency results from (i) the proper phase sepharation of electron donor and acceptor in the active layer and (ii) the better absorption of the active layer. This research work introduces an alternative way to improve solar cell efficiency by adding ZnO into active layer.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Шварц, М. З., А. В. Андреева, Д. А. Андроников, К. В. Емцев, В. Р. Ларионов, М. В. Нахимович, П. В. Покровский, Н. А. Садчиков, С. А. Яковлев et Д. А. Малевский. « Гибридный концентраторно-планарный фотоэлектрический модуль с гетероструктурными солнечными элементами ». Письма в журнал технической физики 49, no 4 (2023) : 15. http://dx.doi.org/10.21883/pjtf.2023.04.54520.19438.

Texte intégral
Résumé :
The paper presents a promising solution for photovoltaic modules that provides overcoming the main conceptual limitation for the concentrator concept in photovoltaics - the impossibility to convert diffused (scattered) solar radiation coming to the panel of sunlight concentrators. The design of a hybrid concentrator-planar photovoltaic module based on heterostructure solar cells: A3B5 triple-junction and Si-HJT is presented. The results of initial outdoor studies of the module output characteristics are discussed and estimates of its energy efficiency are given.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Jeong, Hoon-Seok, Dongeon Kim, Seungin Jee, Min-Jae Si, Changjo Kim, Jung-Yong Lee, Yujin Jung et Se-Woong Baek. « Colloidal Quantum Dot:Organic Ternary Ink for Efficient Solution-Processed Hybrid Solar Cells ». International Journal of Energy Research 2023 (6 février 2023) : 1–14. http://dx.doi.org/10.1155/2023/4911750.

Texte intégral
Résumé :
The fabrication of heterostructures via solution process is one of the essential technologies for realizing efficient advanced-generation optoelectronics. Hybrid structures comprising colloidal quantum dots (CQD) and organic semiconducting molecules are garnering considerable research interest because of their complementing optical and electrical properties. However, blending both the materials and forming a stable electronic ink are a challenge owing to the solubility mismatch. Herein, a CQD:organic ternary-blended hybrid solar ink is devised, and efficient hybrid solar cells are demonstrated via single-step spin coating under ambient conditions. Specifically, the passivation of the benzoic acid ligand on the CQD surface enables the dissolution in low-polar solvent such as chlorobenzene, which yields a stable CQD:organic hybrid ink. The hybrid ink facilitates the formation of favorable thin-film morphologies and, consequently, improves the charge extraction efficiency of the solar cells. The resulting hybrid solar cells exhibit a power conversion efficiency of 15.24% that is the highest performance among all existing air-processed CQD:organic hybrid solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Patel, Haresh S., J. R. Rathod, K. D. Patel, V. M. Pathak et R. Srivastava. « Optical Absorption Study of Molybdenum Diselenide and Polyaniline and their Use in Hybrid Solar Cells ». Advanced Materials Research 665 (février 2013) : 239–53. http://dx.doi.org/10.4028/www.scientific.net/amr.665.239.

Texte intégral
Résumé :
The optical characterization of Molybdenum diselenide (MoSe2) and polyaniline (PANI) has been carried in the wavelength range 200 nm to 2500 nm. The detailed analysis of the optical properties has been carried out only for a range 200 nm to 800 nm from which the indirect band gap around 1.42 eV for MoSe2and 1 eV and 2.5 eV for PANI was evaluated. It was interesting to note that π π* transitions lead to two distinct orders of energy gaps. The hybrid cells were fabricated using a photosensitive interface between MoSe2and PANI. Various parameters of these heterostructure hybrid cells have been evaluated and it was found that the photoconversion efficiency was around 1%. Using the solar cell characteristics, the presence of trapping centers at the n-MoSe2/ p-PANI interface has been confirmed.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tavakoli, Mohammad Mahdi, Hossein Aashuri, Abdolreza Simchi et Zhiyong Fan. « Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells ». Physical Chemistry Chemical Physics 17, no 37 (2015) : 24412–19. http://dx.doi.org/10.1039/c5cp03571f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kaptagai, G. A., B. M. Satanova, F. U. Abuova, N. O. Koilyk, A. U. Abuova, S. A. Nurkenov et A. P. Zharkymbekova. « OPTICAL PROPERTIES OF LOW-DIMENSIONAL SYSTEMS : METHODS OF THEORETICAL STUDY OF 2D MATERIALS ». NNC RK Bulletin, no 4 (31 décembre 2022) : 35–40. http://dx.doi.org/10.52676/1729-7885-2022-4-35-40.

Texte intégral
Résumé :
Heterostructures based on graphene and two-dimensional films of nanostructured, ferromagnetic, transition metal oxides are promising for the development of new multifunctional materials for memory cells, quantum computer elements, Li-battery anodes, (photo) catalysts, supercapacitors, transistors, sensor materials, solar panels, fuel cells, electrochromic devices. A large volume of publications devoted to graphene and heterostructures based on it is and mainly their synthesis processes of hybrid structures. The methods of theoretical investigation of the optical properties of two-dimensional film materials, despite their diversity, require improvement. Consequently, the article presents methods of theoretical investigation of the optical properties of two-dimensional hybrid film structures in combination with ab-initio method.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hussain, Sajjad, Supriya A. Patil, Dhanasekaran Vikraman, Iqra Rabani, Alvira Ayoub Arbab, Sung Hoon Jeong, Hyun-Seok Kim, Hyosung Choi et Jongwan Jung. « Enhanced electrocatalytic properties in MoS2/MoTe2 hybrid heterostructures for dye-sensitized solar cells ». Applied Surface Science 504 (février 2020) : 144401. http://dx.doi.org/10.1016/j.apsusc.2019.144401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Weingarten, M., T. Zweipfennig, A. Vescan et H. Kalisch. « Low-Temperature Processed Hybrid Organic/Silicon Solar Cells with Power Conversion Efficiency up to 6.5% ». MRS Proceedings 1771 (2015) : 201–6. http://dx.doi.org/10.1557/opl.2015.650.

Texte intégral
Résumé :
ABSTRACTHybrid organic/silicon heterostructures have become of great interest for photovoltaic application due to their promising features (e.g. easy fabrication in a low-temperature process) for cost-effective photovoltaics. This work is focused on solar cells with a hybrid heterojunction between the polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) and n-doped monocrystalline silicon. As semi-transparent top contact, a thin (15 nm) Au layer was employed. Devices with different P3HT thicknesses were processed by spin-casting and compared with a reference Au/n-Si Schottky diode solar cell.The current density-voltage (J-V) measurements of the hybrid devices show a significant increase in open-circuit voltage (VOC) from 0.29 V up to 0.50 V for the best performing hybrid devices compared to the Schottky diode reference, while the short-circuit current density (JSC) does not change significantly. The increased VOC indicates that P3HT effectively reduces the reverse electron current into the gold contact. The wavelength-dependent JSC measurements show a decreased JSC in the wavelength range of P3HT absorption. This is related to the reduced JSC generation in silicon not being compensated by JSC generation in P3HT. It is concluded that the charge generation in P3HT is less efficient than in silicon.After a thermal annealing of the hybrid P3HT/silicon solar cells, we achieved power conversion efficiencies (PCE) (AM1.5 illumination) up to 6.5% with VOC of 0.52 V, JSC of 18.6 mA/cm² and a fill factor (FF) of 67%. This is more than twice the efficiency of the reference Schottky diode.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Hybrid Heterostructure Solar Cells"

1

Vaynzof, Yana. « Inverted hybrid solar cells ». Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609823.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wong, Henry Mo Pun. « Semiconducting nanocrystals for hybrid solar cells ». Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613367.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Levitsky, I. A. « Carbon Nanotubes - Si Hybrid Solar Cells ». Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35493.

Texte intégral
Résumé :
This short review describes recent results in the field of carbon nanotube (CNT) – Si hybrid photovolta-ics (PV) focusing on advantages of semiconducting carbon nanotubes over other organic materials used in organic- Si composite photosensing materials. Possible mechanisms of charge phogeneration at CNT- Si in-terface and chargte transport are discussed. Perspectives and future trends in research of this novel class of PV nanohybrids are presented as well. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35493
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhu, Mingxuan. « Silicon nanowires for hybrid solar cells ». Ecole centrale de Marseille, 2013. http://tel.archives-ouvertes.fr/docs/00/94/57/87/PDF/The_manuscript-4.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Noel, Nakita K. « Advances in hybrid solar cells : from dye-sensitised to perovskite solar cells ». Thesis, University of Oxford, 2014. https://ora.ox.ac.uk/objects/uuid:e0f54943-546a-49cd-8fd9-5ff07ec7bf0a.

Texte intégral
Résumé :
This thesis presents a study of hybrid solar cells, specifically looking at various methods which can be employed in order to increase the power conversion efficiency of these devices. The experiments and results contained herein also present a very accurate picture of how rapidly the field of hybrid solar cells has progressed within the past three years. Chapters 1 and 2 present the background and motivation for the investigations undertaken, as well as the relevant theory underpinning solar cell operation. Chapter 2 also gives a brief review of the literature pertinent to the main types of devices investigated in this thesis; dye-sensitised solar cells, semiconductor sensitized solar cells and perovskite solar cells. Descriptions of the synthetic procedures, as well as the details of device fabrication and any measurement techniques used are outlined in Chapter 3. The first set of experimental results is presented in Chapter 4. This chapter outlines the synthesis of mesoporous single crystals (MSCs) of anatase TiO2 as well as an investigation of its electronic properties. Having shown that this material has superior electronic properties to the conventionally used nanoparticle films, they were then integrated into low temperature processed dye-sensitised solar cells and achieved power conversion efficiencies of > 3%, exhibiting electron transport rates which were orders of magnitude higher than those obtained for the high temperature processed control films. Chapter 5 further investigates the use of MSCs in photovoltaic devices, this time utilising a more strongly absorbing inorganic sensitiser, Sb2S3. Utilising the readily tunable pore size of MSCs, these Sb2S3 devices showed an increase in voltage and fill factor which can be attributed to a decrease in recombination within these devices. This chapter also presents the use of Sb2S3 in the meso-superstructured configuration. This device architecture showed consistently higher voltages suggesting that in this architecture, charge transport occurs through the absorber and not the mesoporous scaffold. Chapters 6 and 7 focus on the use of hybrid organic-inorganic perovskites in photovoltaic devices. In Chapter 6 the mixed halide, lead-based perovskite, CH3NH3PbI3-xClx is employed in a planar heterojunction device architecture. The effects of Lewis base passivation on this material are investigated by determining the photoluminescence (PL) lifetimes and quantum efficiencies of treated and untreated films. It is found that passivating films of this material using Lewis bases causes an increase in the PLQE at low fluences as well as increasing the PL lifetime. By globally fitting these results to a model the trap densities are extracted and it is found that using these surface treatments decreases the trap density of the perovskite films. Finally, these treatments are used in complete solar cells resulting in increased power conversion efficiencies and an improvement in the stabilised power output of the devices. Chapter 7 describes the materials synthesis and characterisation of the tin-based perovskite CH3NH3SnI3 and presents the first operational, lead-free perovskite solar cell. The work presented in this thesis describes significant advances in the field of hybrid solar cells, specifically with regards to improvements made to the nanostructured electrode, and the development and implementation of more highly absorbing sensitizers. The improvements discussed here will prove to be quite important in the drive towards exploiting solar power as a clean, affordable source of energy.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ishwara, Thilini W. S. « Optimisation of hybrid organic/ inorganic solar cells ». Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510746.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Böhm, Marcus. « Hybrid ligands in quantum dot solar cells ». Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708460.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lentz, Levi (Levi Carl). « Rational design of hybrid organic solar cells ». Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92219.

Texte intégral
Résumé :
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 113-117).
In this thesis, we will present a novel design for a nano-structured organic-inorganic hybrid photovoltaic material that will address current challenges in bulk heterojunction (BHJ) organic-based solar cell materials. Utilizing first principles Density Functional Theory (DFT), we show that layered inorganic phosphates and tradition organic dyes can be combined to form a new class of bulk heterojunction photovoltaic with high electron and hole mobilities with low exciton recombination, potentially enabling very high efficiency with existing organic-based solar-cell molecules. We will discuss the physical origin of these properties and investigate several approaches for engineering the electronic structure of these materials. By using these methods, it will be possible to engineer the transport and optical properties of these materials, with potential applications beyond photovoltaics in areas from organic electronics to photoactuators.
by Levi Lentz.
S.M.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Weickert, Jonas [Verfasser]. « Nanostructured Interfaces in Hybrid Solar Cells / Jonas Weickert ». Konstanz : Bibliothek der Universität Konstanz, 2014. http://d-nb.info/1058326031/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cacovich, Stefania. « Electron microscopy studies of hybrid perovskite solar cells ». Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/276753.

Texte intégral
Résumé :
Over the last five years hybrid organic-inorganic metal halide perovskites have attracted strong interest in the solar cell community as a result of their high power conversion efficiency and the solid opportunity to realise a low-cost as well as industry-scalable technology. Nevertheless, several aspects of this novel class of materials still need to be explored and the level of our understanding is rapidly and constantly evolving, from month to month. This dissertation reports investigations of perovskite solar cells with a particular focus on their local chemical composition. The analytical characterisation of such devices is very challenging due to the intrinsic instability of the organic component in the nanostructured compounds building up the cell. STEM-EDX (Scanning Transmission Electron Microscopy - Energy Dispersive X-ray spectroscopy) was employed to resolve at the nanoscale the morphology and the elemental composition of the devices. Firstly, a powerful procedure, involving FIB (Focus Ion Beam) sample preparation, the acquisition of STEM-EDX maps and the application of cutting edge post-processing data techniques based on multivariate analysis was developed and tested. The application of this method has drastically improved the quality of the signal that can be extracted from perovskite thin films before the onset of beam-induced transformations. Morphology, composition and interfaces in devices deposited by using different methodologies and external conditions were then explored in detail by combining multiple complementary advanced characterisation tools. The observed variations in the nanostructure of the cells were related to different photovoltaic performance, providing instructive indications for the synthesis and fabrication routes of the devices. Finally, the main degradation processes that affect perovskite solar cells were probed. STEM-EDX was used in conjunction with the application of in situ heating, leading to the direct observation of elemental species migration within the device, reported here for the first time with nanometric spatial resolution. Further analyses, involving a set of experiments aimed to study the effects of air exposure and light soaking on the cells, were designed and performed, providing evidence of the main pathways leading to the drastic drop in the device performance.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Hybrid Heterostructure Solar Cells"

1

Huang, Hui, et Jinsong Huang, dir. Organic and Hybrid Solar Cells. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10855-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

van Sark, Wilfried G. J. H. M., Lars Korte et Francesco Roca, dir. Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22275-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wilfried G. J. H. M. Sark. Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lin, Ching-Fuh. Organic, inorganic, and hybrid solar cells : Principles and practice. Hoboken, NJ : Wiley, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fujiwara, Hiroyuki, dir. Hybrid Perovskite Solar Cells. Wiley, 2021. http://dx.doi.org/10.1002/9783527825851.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Schmidt-Mende, Lukas, Stefan Kraner et Azhar Fakharuddin. Organic and Hybrid Solar Cells. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110736939.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Huang, Hui, et Jinsong Huang. Organic and Hybrid Solar Cells. Springer, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Schmidt-Mende, Lukas, Stefan Kraner et Azhar Fakharuddin. Organic and Hybrid Solar Cells. de Gruyter GmbH, Walter, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Schmidt-Mende, Lukas, Stefan Kraner et Azhar Fakharuddin. Organic and Hybrid Solar Cells. de Gruyter GmbH, Walter, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Huang, Hui, et Jinsong Huang. Organic and Hybrid Solar Cells. Springer, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Hybrid Heterostructure Solar Cells"

1

Lloyd, Matthew T. « Hybrid Solar Cells ». Dans Encyclopedia of Nanotechnology, 1494–500. Dordrecht : Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Webb, Benjamin L. J., David Holmes, Chun Li, Jin Z. Zhang et Matthew T. Lloyd. « Hybrid Solar Cells ». Dans Encyclopedia of Nanotechnology, 1042–48. Dordrecht : Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Conradt, Jonas. « Hybrid Solar Cells ». Dans Biophotonics : Spectroscopy, Imaging, Sensing, and Manipulation, 375. Dordrecht : Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9977-8_25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chen, Shih-Hsiu, Tsung-Yen Wu et Chia-Yun Chen. « Low-Dimensional Heterostructure-Based Solar Cells ». Dans Energy Storage and Conversion Materials, 223–35. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003367215-13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Schmidt-Mende, Lukas. « Nanostructured Hybrid Solar Cells ». Dans Functional Supramolecular Architectures, 801–26. Weinheim, Germany : WILEY-VCH Verlag & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527689897.ch26.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Soosaimanickam, Ananthakumar, Saravanan Krishna Sundaram et Moorthy Babu Sridharan. « Hybrid Perovskite Solar Cells ». Dans Nanotechnology, 315–48. Boca Raton : CRC Press, 2022. http://dx.doi.org/10.1201/9781003220350-17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Günş, Serap, et Niyazi Serdar Sariciftci. « Organic and Inorganic Hybrid Solar Cells ». Dans Printable Solar Cells, 1–35. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119283720.ch1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zeman, Miro, et Dong Zhang. « Heterojunction Silicon Based Solar Cells ». Dans Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, 13–43. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22275-7_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tai, Qidong, et Feng Yan. « Hybrid Solar Cells with Polymer and Inorganic Nanocrystals ». Dans Organic Solar Cells, 243–65. London : Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4823-4_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hahn, Yoon-Bong, Tahmineh Mahmoudi et Yousheng Wang. « Organic—Inorganic Hybrid Solar Cells ». Dans Next-Generation Solar Cells, 129–49. New York : Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003372387-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Hybrid Heterostructure Solar Cells"

1

Wang, Zhiping, Qianqian Lin, Francis Chmiel, Nobuya Sakai, Laura Herz et Henry Snaith. « Self-assembled 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites for stable and efficient solar cells ». Dans 2nd Asia-Pacific Hybrid and Organic Photovoltaics. Valencia : Fundació Scito, 2017. http://dx.doi.org/10.29363/nanoge.ap-hopv.2018.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Shigekawa, Naoteru, Li Chai, Masashi Morimoto, Jianbo Liang, Ryusuke Onitsuka, Takaaki Agui, Hiroyuki Juso et Tatsuya Takamoto. « Hybrid triple-junction solar cells by surface activate bonding of III–V double-junction-cell heterostructures to ion-implantation-based Si cells ». Dans 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6924976.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mueller, Thomas, Marco Furchi, Armin Zechmeister, Simone Schuler et Andreas Pospischil. « Atomically-thin van der Waals Heterostructure Solar Cells ». Dans CLEO : QELS_Fundamental Science. Washington, D.C. : OSA, 2015. http://dx.doi.org/10.1364/cleo_qels.2015.fth3e.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lee, M. M., J. Teuscher, T. Miyasaka, T. N. Murakami et H. J. Snaith. « Hybrid Perovskite Solar Cells ». Dans 2013 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2013. http://dx.doi.org/10.7567/ssdm.2013.n-4-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ho-Baillie, Anita. « Perovskite Solar Cells ». Dans Organic, Hybrid, and Perovskite Photovoltaics XXII, sous la direction de Zakya H. Kafafi, Paul A. Lane, Gang Li, Ana Flávia Nogueira et Ellen Moons. SPIE, 2021. http://dx.doi.org/10.1117/12.2602805.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gale, R. P., R. W. McClelland, B. D. King et J. V. Gormley. « High-efficiency thin-film AlGaAs-GaAs double heterostructure solar cells ». Dans Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. IEEE, 1988. http://dx.doi.org/10.1109/pvsc.1988.105741.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yuan Zhao et Yong-Hang Zhang. « Simulated performance of monocrystalline CdTe/MgCdTe double heterostructure solar cells ». Dans 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7355772.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Boumaour, M., A. Bahfir, S. Sali, S. Kermadi, L. Zougar et N. Ouarab. « Innovative emitter design for low-cost silicon based heterostructure solar cells ». Dans 2014 North African Workshop on Dielectric Materials for Photovoltaic Systems (NAWDMPV). IEEE, 2014. http://dx.doi.org/10.1109/nawdmpv.2014.6997604.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Campbell, Calli M., Yuan Zhao, Ernesto Suarez, Mathieu Boccard, Xin-Hao Zhao, Zhao-Yu He, Preston T. Webster et al. « 1.7 eV MgCdTe double-heterostructure solar cells for tandem device applications ». Dans 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7749622.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kim, Hwan Kyu. « Dye-sensitized Solar Cells Strike Back to Practically Useful Next Generation Solar Cells ». Dans 13th Conference on Hybrid and Organic Photovoltaics. València : Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.hopv.2021.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Hybrid Heterostructure Solar Cells"

1

Ager, Joel W. CRADA Final Report : Process development for hybrid solar cells. Office of Scientific and Technical Information (OSTI), février 2011. http://dx.doi.org/10.2172/1007196.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hsu, Julia, W. P. Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells. Office of Scientific and Technical Information (OSTI), septembre 2008. http://dx.doi.org/10.2172/942056.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Summers, C. J., A. Rohatgi, A. Torabi et H. M. Harris. New concepts for high efficiency energy conversion : The avalanche heterostructure and superlattice solar cells. Subcontract report, 1 June 1987--31 January 1990. Office of Scientific and Technical Information (OSTI), janvier 1993. http://dx.doi.org/10.2172/10129163.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Summers, C. J., A. Rohatgi, A. Torabi et H. M. Harris. New Concepts for High Efficiency Energy Conversion : The Avalanch Heterostructure and Superlattice Solar Cells, A Subcontract Report, 1 June 1987 - 31 January 1990. Office of Scientific and Technical Information (OSTI), janvier 1993. http://dx.doi.org/10.2172/6744456.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie