Littérature scientifique sur le sujet « Human neurogenesis »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Human neurogenesis ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Human neurogenesis"
Snyder, Jason S. « Questioning human neurogenesis ». Nature 555, no 7696 (mars 2018) : 315–16. http://dx.doi.org/10.1038/d41586-018-02629-3.
Texte intégralMurrell, Wayne, Gillian R. Bushell, Jonathon Livesey, John McGrath, Kelli P. A. MacDonald, Paul R. Bates et Alan Mackay-Sim. « Neurogenesis in adult human ». NeuroReport 7, no 6 (avril 1996) : 1189–94. http://dx.doi.org/10.1097/00001756-199604260-00019.
Texte intégralSugano, Hidenori, Madoka Nakajima, Ikuko Ogino et Hajime Arai. « Neurogenesis in Human Epileptic Hippocampus ». Journal of the Japan Epilepsy Society 26, no 1 (2008) : 16–25. http://dx.doi.org/10.3805/jjes.26.16.
Texte intégralFlor-García, Miguel, Julia Terreros-Roncal, Elena P. Moreno-Jiménez, Jesús Ávila, Alberto Rábano et María Llorens-Martín. « Unraveling human adult hippocampal neurogenesis ». Nature Protocols 15, no 2 (8 janvier 2020) : 668–93. http://dx.doi.org/10.1038/s41596-019-0267-y.
Texte intégralLucassen, Paul J., Nicolas Toni, Gerd Kempermann, Jonas Frisen, Fred H. Gage et Dick F. Swaab. « Limits to human neurogenesis—really ? » Molecular Psychiatry 25, no 10 (7 janvier 2019) : 2207–9. http://dx.doi.org/10.1038/s41380-018-0337-5.
Texte intégralLiu, He, et Ni Song. « Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases ». Journal of Central Nervous System Disease 8 (janvier 2016) : JCNSD.S32204. http://dx.doi.org/10.4137/jcnsd.s32204.
Texte intégralInta, agos, et Peter Gass. « Is Forebrain Neurogenesis a Potential Repair Mechanism after Stroke ? » Journal of Cerebral Blood Flow & ; Metabolism 35, no 7 (13 mai 2015) : 1220–21. http://dx.doi.org/10.1038/jcbfm.2015.95.
Texte intégralMustafin, Rustam N., et Elza K. Khusnutdinova. « Postnatal neurogenesis in the human brain ». Morphology 159, no 2 (1 août 2022) : 37–46. http://dx.doi.org/10.17816/1026-3543-2021-159-2-37-46.
Texte intégralKessaris, Nicoletta. « Human cortical interneuron development unraveled ». Science 375, no 6579 (28 janvier 2022) : 383–84. http://dx.doi.org/10.1126/science.abn6333.
Texte intégralLewis, Sian. « Human olfaction is not neurogenesis-dependent ». Nature Reviews Neuroscience 13, no 7 (20 juin 2012) : 451. http://dx.doi.org/10.1038/nrn3286.
Texte intégralThèses sur le sujet "Human neurogenesis"
Andersson, Annika. « Studies on neurogenesis in the adult human brain ». Thesis, Södertörn University College, School of Life Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-3646.
Texte intégralMany studies on neurogenesis in adult dentate gyrus (DG) have been performed on rodents and other mammalian species, but only a few on adult human DG. This study is focusing on neurogenesis in adult human DG. To characterize the birth of cells in DG, the expression of the cell proliferation marker Ki67 was examined using immunohistochemistry. Ki67-positive labelling was indeed observed in the granular cell layer and the molecular layer of dentate gyrus and in the hilus of hippocampus, as well as in the subgranular zone (SGZ). The Ki67 positive nuclei could be divided into three groups, based on their morphology and position, suggesting that one of the groups represents neuronal precursors. Fewer Ki67 positive cells were seen in aged subjects and in subjects with an alcohol abuse. When comparing the Ki67 positive cells and the amount of blood vessels as determined by anti factor VIII, no systematic pattern could be discerned. To identify possible stem/progenitor cells in DG a co-labelling with nestin and glial fibrillary acid protein was carried out. Co-labelling was found in the SGZ, but most of the filaments were positive for just one of the two antibodies. Antibodies to detect immature/mature neurons were also used to investigate adult human neurogenesis in DG. The immature marker βIII-tubulin showed a weak expression. The other two immature markers (PSA-NCAM and DCX) used did not work, probably since they were not cross-reacting against human tissue. In summary, this study shows that new cells are continuously formed in the adult human hippocampus, but at a slower pace compared to the rat, and that some of these new cells may represent neuronal precursors.
Yu, Chieh. « Heparan sulfate proteoglycans in human models of Neurogenesis ». Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/203960/1/Chieh_Yu_Thesis.pdf.
Texte intégralKomuro, Yutaro. « Altered adult neurogenesis in a mouse model of human tauopathy ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1434743393.
Texte intégralAhmad, Ruhel [Verfasser], et Albrecht [Akademischer Betreuer] Müller. « Neurogenesis from parthenogenetic human embryonic stem cells / Ruhel Ahmad. Betreuer : Albrecht Müller ». Würzburg : Universitätsbibliothek der Universität Würzburg, 2013. http://d-nb.info/1031379878/34.
Texte intégralWei, Yulei. « Genetic Knowledge-based Artificial Control over Neurogenesis in Human Cells Using Synthetic Transcription Factor Mimics ». Kyoto University, 2018. http://hdl.handle.net/2433/232265.
Texte intégralGarnett, Shaun. « Generating a proteomic profile of neurogenesis, through the use of human foetal neural stem cells ». Doctoral thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/31143.
Texte intégralBramwell, Thomas William. « Investigations into the use of human embryonal carcinoma stem cells as a model to study dopaminergic neurogenesis ». Thesis, Durham University, 2009. http://etheses.dur.ac.uk/2071/.
Texte intégralOikari, Lotta Emilia. « Regulation of human neural stem cell fate determination by proteoglycans ». Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/103844/8/Lotta_Emilia_Oikari_Thesis.pdf.
Texte intégralGUARNIERI, GIULIA. « Human cholinergic neurons from nucleus basalis of Meynert : a new promising tool to study pathogenetic mechanisms affecting neurogenesis ». Doctoral thesis, Università di Siena, 2019. http://hdl.handle.net/11365/1072770.
Texte intégralPigeon, Julien. « The role of NEUROG2 T149 phosphorylation site in the developing human neocortex ». Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS092.
Texte intégralNeocortical expansion throughout evolution has been responsible for higher-order cognitive abilities and relies on the increased proliferative capacities of cortical progenitors to increase neuronal production. Therefore, in gyrencephalic species such as humans and primates, where the neurogenic period is protracted, the regulation of the balance between progenitor maintenance and differentiation is of key importance for the right neuronal production. The control of this balance in the dorsal telencephalon, which gives rise to the neocortex, is mediated by feedback regulation between Notch signaling and the proneural transcription factor Neurogenin2 (NEUROG2). As the expression of NEUROG2 alone is sufficient to induce neurogenesis in the neocortex, its regulation at the gene level has been extensively studied in mice. However, recent findings highlight that regulation at the protein level through post-translational modifications can profoundly influence protein activity and stability. Indeed, the modulation of the conserved NEUROG2 T149 phosphorylation site in the developing mouse neocortex results in an altered pool of progenitors and number of neurons in the deep and upper layers. Nevertheless, it is not known how such post-translation modification regulates NEUROG2 activity in the development of the human neocortex under endogenous levels and its contribution to the development of the neocortex.We hypothesize that modulation of the activity of the transcription factor NEUROG2 through this T149 phosphorylation site may regulate the pace of the temporal advance of human cortical progenitors down the differentiation landscape.To test this hypothesis in humans, we used 3D cortical organoids derived from CRISPR/Cas9 engineered iPSCs lines to study cortical neurogenesis. Before diving into the role of post translational modifications regulating NEUROG2 activity we started by confirming, for the first time in humans that Neurogenin2 is indeed the gateway gene of neuronal differentiation. In differentiated iPSCs NEUROG2 KO clones, we observed reduced proportions of neurons after 70 and 140 days in vitro at both the mid and late stages of cortical organoid development. This phenotype is accompanied by a ventralization of these dorsal forebrain organoids with a downregulation of the genes encoding for the dorsal forebrain identity and an upregulation of the genes encoding for the ventral forebrain identity. Knowing that Neurogenin2 is required for cortical neurogenesis, we next studied how the loss of NEUROG2 phosphorylation site T149 by its replacement with an Alanine (T149A) at endogenous levels alters neuronal production. To this end we combined live imaging of radial glial clones, immunohistochemistry for key cell fate markers, machine-learning based cell type quantification, transcriptional activation and stem cell reprogramming assays, RNA sequencing and chromatin immunoprecipitation to analyze cortical neurogenesis. We found, on the one hand, the TA/TA mutant does not change the pattern of NEUROG2 expression in both radial glial cells and intermediate progenitors, nor its ability to bind and activate target genes or reprogram human stem cells to neurons. However, the TA/TA mutant radial glia switch their division mode from proliferative to neurogenic and generate more neurons at both the mid and late stages of cortical development in organoids. Mechanistically, we found that this phenotype is accompanied by an upregulation of the genes encoding the organization and the movements of the primary cilium of radial glial cells, which are downregulated in the NEUROG2 KO clones. These results suggest a strong link between the primary cilium, Neurogenin2, and its phosphorylation profile with the regulation of neurogenesis in human cortical organoids
Livres sur le sujet "Human neurogenesis"
Winter, Robin M. London dysmorphology database : &, London neurogenetics database. 2e éd. Oxford : Oxford University Press, 1998.
Trouver le texte intégralWinter, Robin M. London dysmorphology database. 2e éd. Oxford : Oxford University Press, 1996.
Trouver le texte intégralR, Hayden Michael, et Rubinsztein D. C, dir. Analysis of triplet repeat disorders. Oxford : Bios Scientific Publishers, 1998.
Trouver le texte intégralSutcliffe, Alastair. Congenital anomalies : Case studies and mechanisms. Rijeka, Croatia : InTech, 2012.
Trouver le texte intégralD, Wells R., Warren Stephen T et Sarmiento Marion, dir. Genetic instabilities and hereditary neurological diseases. San Diego, Calif : Academic Press, 1998.
Trouver le texte intégral1946-, Oostra Ben A., dir. Trinucleotide diseases and instability. Berlin : Springer, 1998.
Trouver le texte intégralTakao, Kumazawa, Kruger Lawrence et Mizumura Kazue, dir. The polymodal receptor : A gateway to pathological pain. Amsterdam : Elsevier, 1996.
Trouver le texte intégralCryan, John F., et Andreas Reif. Behavioral Neurogenetics. Springer, 2014.
Trouver le texte intégralCryan, John F., et Andreas Reif. Behavioral Neurogenetics. Springer, 2012.
Trouver le texte intégralCryan, John F., et Andreas Reif. Behavioral Neurogenetics. Springer London, Limited, 2012.
Trouver le texte intégralChapitres de livres sur le sujet "Human neurogenesis"
Bédard, Andréanne, Patrick J. Bernier et André Parent. « Neurogenesis in Monkey and Human Adult Brain ». Dans Neurogenesis in the Adult Brain II, 1–21. Tokyo : Springer Japan, 2011. http://dx.doi.org/10.1007/978-4-431-53945-2_1.
Texte intégralSachan, Nalani, Mousumi Mutsuddi et Ashim Mukherjee. « Notch Signaling : From Neurogenesis to Neurodegeneration ». Dans Insights into Human Neurodegeneration : Lessons Learnt from Drosophila, 185–221. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2218-1_7.
Texte intégralSuzuki, Masatoshi, Jacalyn McHugh et Narisorn Kitiyanant. « Human Neural Progenitor Cells : Mitotic and Neurogenic Effects of Growth Factors, Neurosteroids, and Excitatory Amino Acids ». Dans Hormones in Neurodegeneration, Neuroprotection, and Neurogenesis, 331–45. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633968.ch19.
Texte intégralVineyard, Craig M., Stephen J. Verzi, Thomas P. Caudell, Michael L. Bernard et James B. Aimone. « Adult Neurogenesis : Implications on Human And Computational Decision Making ». Dans Foundations of Augmented Cognition, 531–40. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39454-6_57.
Texte intégralØlstørn, Håvard, Morten C. Moe, Mercy Varghese et Iver A. Langmoen. « Neurogenesis and Potential Use of Stem Cells from Adult Human Brain ». Dans Stem Cells, Human Embryos and Ethics, 41–53. Dordrecht : Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6989-5_4.
Texte intégralde los Rios, Maria Elizabeth. « Reflections on neurogenetic challenges to human dignity and social doctrine of the Catholic Church ». Dans Interreligious Perspectives on Mind, Genes and the Self, 112–16. Abingdon, Oxon ; New York, NY : Routledge, 2019. | Series : Routledge science and religion series : Routledge, 2018. http://dx.doi.org/10.4324/9780429456145-12.
Texte intégralBhaduri, Aparna, Madeline G. Andrews et Arnold R. Kriegstein. « Human neurogenesis ». Dans Patterning and Cell Type Specification in the Developing CNS and PNS, 751–67. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-814405-3.00029-1.
Texte intégral« Timespans of Neurogenesis ». Dans Atlas of Human Central Nervous System Development, 490–97. CRC Press, 2007. http://dx.doi.org/10.1201/9781420003284.ax1.
Texte intégralGong, Jing, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang et Haiwei Xu. « Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine ». Dans Organoids [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104044.
Texte intégralCho, Kyung-Ok, et Jenny Hsieh. « Adult Neurogenesis in Epileptogenesis and Comorbidities ». Dans Jasper's Basic Mechanisms of the Epilepsies, sous la direction de Annamaria Vezzani et Helen E. Scharfman, 523–38. 5e éd. Oxford University PressNew York, 2024. http://dx.doi.org/10.1093/med/9780197549469.003.0025.
Texte intégralActes de conférences sur le sujet "Human neurogenesis"
Proshchina, Alexandra, Anastasia Kharlamova, Olga Godovalova, Evgeniya Grushetskaya et Sergey Saveliev. « IMMUNOPHENOTYPIC PROFILES OF NEUROGENESIS IN THE DEVELOPMENT OF THE HUMAN CEREBRAL CORTEX ». Dans XX INTERNATIONAL INTERDISCIPLINARY CONGRESS NEUROSCIENCE FOR MEDICINE AND PSYCHOLOGY, 230–31. LCC MAKS Press, 2024. http://dx.doi.org/10.29003/m4000.sudak.ns2024-20/230-231.
Texte intégralBobkova, Natalia Victorovna, Rimma Alekseevna Poltavtseva, Daria Jurievna Zhdanova, Vladimir Igorevich Kovalev et Alina Vadimovna Chaplygina. « THE EFFECT OF YB-1 PROTEIN IN СHIMERIC MODEL OF ALZHEIMER’S DISEASE ». Dans NEW TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY. Institute of information technology, 2021. http://dx.doi.org/10.47501/978-5-6044060-1-4.10.
Texte intégralYildirim, Murat, Danielle Feldman, Tianyu Wang, Dimitre G. Ouzounov, Stephanie Chou, Justin Swaney, Kwanghun Chung, Chris Xu, Peter T. C. So et Mriganka Sur. « Third harmonic generation imaging of intact human cerebral organoids to assess key components of early neurogenesis in Rett Syndrome (Conference Presentation) ». Dans Multiphoton Microscopy in the Biomedical Sciences XVII, sous la direction de Ammasi Periasamy, Peter T. So, Xiaoliang S. Xie et Karsten König. SPIE, 2017. http://dx.doi.org/10.1117/12.2256182.
Texte intégralPorcino, Caterina. « NEUROTROPHINS, TRK-RECEPTORS AND CALCIUM BINDING PROTEIN LOCALIZATION IN MECHANOSENSORY SYSTEMS AND RETINA OF NOTHOBRANCHIUS GUENTHERI ». Dans Dubai International Conference on Research in Life-Science & Healthcare, 22-23 February 2024. Global Research & Development Services, 2024. http://dx.doi.org/10.20319/icrlsh.2024.4243.
Texte intégral