Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Hot carrier solar cell.

Articles de revues sur le sujet « Hot carrier solar cell »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Hot carrier solar cell ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Ikeri, H. I., A. I. Onyia et F. N. Kalu. « Hot carrier exploitation strategies and model for efficient solar cell applications ». Chalcogenide Letters 18, no 11 (novembre 2021) : 745–57. http://dx.doi.org/10.15251/cl.2021.1811.745.

Texte intégral
Résumé :
Hot carriers are electrons or holes that are created in semiconductors upon the absorption of photons with energies greater than the fundamental bandgap. The excess energy of the hot carrier cools to the lattice temperature via carrier–phonon scattering and wasted as heat in [the] picoseconds timescale. The hot-carrier cooling represents a severe loss in the solar cells that have significantly limits their power conversion efficiencies. Hot carrier solar cells aim to mitigate this optical limitation by effective utilization of carriers at elevated energies. However, exploitation of hot carrier energy is extremely challenging as hot carriers rapidly lose their excess energy in phonon emission and therefore requires a substantial delay of carrier cooling in absorber material. In this paper a simple model was formulated to study the kinetic energies and hence the energy levels of the photo excited carriers in the quantum dots (QDs) whereas Schaller model was used to investigate the threshold energies of considered QDs. Results strongly indicate low threshold photon energies within the energy conservation limit for PbSe, PbTe, PbS, InAs, and InAs QDs. These materials seem to be good candidates for efficient carrier multiplication. It is found also that PbSe, PbTe, PbS, InAs, ZnS and InAs QDs exhibit promising potential for possible hot carrier absorber due to their widely spaced energy levels predicted to offer a large phononic gap between the optical and acoustic branches in the phonon dispersion. This in principle enhances phonon bottleneck effect that dramatically slows down hot carrier cooling leading to retention of hot carriers long enough to enable their exploitation. Two novel strategies were employed for the conversion of hot carriers into usable energies. The first approach involves the extraction of the energetic hot carriers while they are ‘hot’ to create higher photo voltage while the second approach uses the hot carrier to produce more carriers through impact ionization to create higher photo current. These mechanisms theoretically give rise to high overall conversion efficiencies of hot carrier energy well above Shockley and Queisser limit of conventional solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Conibeer, Gavin, Robert Patterson, Lunmei Huang, Jean-Francois Guillemoles, Dirk Kőnig, Santosh Shrestha et Martin A. Green. « Modelling of hot carrier solar cell absorbers ». Solar Energy Materials and Solar Cells 94, no 9 (septembre 2010) : 1516–21. http://dx.doi.org/10.1016/j.solmat.2010.01.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Konovalov, Igor, et Vitali Emelianov. « Hot carrier solar cell as thermoelectric device ». Energy Science & ; Engineering 5, no 3 (juin 2017) : 113–22. http://dx.doi.org/10.1002/ese3.159.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sogabe, Tomah, Kodai Shiba et Katsuyoshi Sakamoto. « Hydrodynamic and Energy Transport Model-Based Hot-Carrier Effect in GaAs pin Solar Cell ». Electronic Materials 3, no 2 (11 mai 2022) : 185–200. http://dx.doi.org/10.3390/electronicmat3020016.

Texte intégral
Résumé :
The hot-carrier effect and hot-carrier dynamics in GaAs solar cell device performance were investigated. Hot-carrier solar cells based on the conventional operation principle were simulated based on the detailed balance thermodynamic model and the hydrodynamic energy transportation model. A quasi-equivalence between these two models was demonstrated for the first time. In the simulation, a specially designed GaAs solar cell was used, and an increase in the open-circuit voltage was observed by increasing the hot-carrier energy relaxation time. A detailed analysis was presented regarding the spatial distribution of hot-carrier temperature and its interplay with the electric field and three hot-carrier recombination processes: Auger, Shockley–Read–Hall, and radiative recombinations.
Styles APA, Harvard, Vancouver, ISO, etc.
5

König, D., Y. Takeda et B. Puthen-Veettil. « Technology-compatible hot carrier solar cell with energy selective hot carrier absorber and carrier-selective contacts ». Applied Physics Letters 101, no 15 (8 octobre 2012) : 153901. http://dx.doi.org/10.1063/1.4757979.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Würfel, P., A. S. Brown, T. E. Humphrey et M. A. Green. « Particle conservation in the hot-carrier solar cell ». Progress in Photovoltaics : Research and Applications 13, no 4 (2005) : 277–85. http://dx.doi.org/10.1002/pip.584.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

König, Dirk, Yasuhiko Takeda, Binesh Puthen-Veettil et Gavin Conibeer. « Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber ». Japanese Journal of Applied Physics 51 (22 octobre 2012) : 10ND02. http://dx.doi.org/10.1143/jjap.51.10nd02.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

König, Dirk, Yasuhiko Takeda, Binesh Puthen-Veettil et Gavin Conibeer. « Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber ». Japanese Journal of Applied Physics 51, no 10S (1 octobre 2012) : 10ND02. http://dx.doi.org/10.7567/jjap.51.10nd02.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Boyer-Richard, Soline, Fei Fan, Nicolas Chevalier, Antoine Létoublon, Alexandre Beck, Karine Tavernier, Shalu Rani et al. « Preliminary study of selective contacts for hot carrier solar cells ». EPJ Photovoltaics 15 (2024) : 38. http://dx.doi.org/10.1051/epjpv/2024031.

Texte intégral
Résumé :
Hot carrier solar cells are a concept of photovoltaic devices, which offers the opportunity to harvest solar energy beyond the Shockley-Queisser limit. Unlike conventional photovoltaic devices, hot carrier solar cells convert excess kinetic energy into useful electrical power rather than losing it through thermalisation mechanisms. To extract the carriers while they are still “hot”, efficient energy-selective contacts must be developed. In previous studies, the presence of the hot carrier population in a p-i-n solar cell based on a single InGaAsP quantum well on InP substrate at room temperature has been demonstrated by means of complementary optical and electrical measurements, leading to an operating condition for this device beyond the limit for classical device operation. This result allows to design a new generation of devices to increase the hot carrier conversion contribution. In this work, we study InGaAs/AlInAs type II heterojunction as a selective contact for a future hot carrier solar cell device epitaxially grown on (001) oriented InP substrate. Two p-i-n solar cells have been grown by molecular beam epitaxy on InP. The absorber is a 50 nm-thick InGaAs layer surrounded by AlInAs barriers, all lattice-matched to InP. Two architectures are compared, the first with two symmetrical AlInAs barriers and the second with a single InGaAs quantum well in the center of the n-side barrier to allow electron tunneling across the barrier. Electrical characteristics under laser illumination with two different wavelengths have been measured to investigate the effect of the selective contact compared to the barrier. This preliminary study of InGaAs/AlInAs-based selective contacts show that such III–V combination is adapted for a future hot carrier solar cell in the InP technology.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ferry, D. K. « In search of a true hot carrier solar cell ». Semiconductor Science and Technology 34, no 4 (20 mars 2019) : 044001. http://dx.doi.org/10.1088/1361-6641/ab0bc3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Konovalov, I., V. Emelianov et R. Linke. « Hot carrier solar cell with semi infinite energy filtering ». Solar Energy 111 (janvier 2015) : 1–9. http://dx.doi.org/10.1016/j.solener.2014.10.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Conibeer, G. J., D. König, M. A. Green et J. F. Guillemoles. « Slowing of carrier cooling in hot carrier solar cells ». Thin Solid Films 516, no 20 (août 2008) : 6948–53. http://dx.doi.org/10.1016/j.tsf.2007.12.102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Li, Mingjie, Jianhui Fu, Qiang Xu et Tze Chien Sum. « Slow Hot‐Carrier Cooling in Halide Perovskites : Prospects for Hot‐Carrier Solar Cells ». Advanced Materials 31, no 47 (2 janvier 2019) : 1802486. http://dx.doi.org/10.1002/adma.201802486.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Piccone, Ashley. « Combining hot-carrier and multijunction solar cells increases efficiency, lowers cost ». Scilight 2022, no 21 (27 mai 2022) : 211106. http://dx.doi.org/10.1063/10.0009522.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Chung, Simon, Santosh Shrestha, Xiaoming Wen, Yu Feng, Neeti Gupta, Hongze Xia, Pyng Yu, Jau Tang et Gavin Conibeer. « Hafnium nitride for hot carrier solar cells ». Solar Energy Materials and Solar Cells 144 (janvier 2016) : 781–86. http://dx.doi.org/10.1016/j.solmat.2014.10.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Hirst, L. C., M. P. Lumb, R. Hoheisel, C. G. Bailey, S. P. Philipps, A. W. Bett et R. J. Walters. « Spectral sensitivity of hot carrier solar cells ». Solar Energy Materials and Solar Cells 120 (janvier 2014) : 610–15. http://dx.doi.org/10.1016/j.solmat.2013.10.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

König, Dirk, et Yao Yao. « Practical concept of an all-optical hot carrier solar cell ». Japanese Journal of Applied Physics 54, no 8S1 (2 juillet 2015) : 08KA03. http://dx.doi.org/10.7567/jjap.54.08ka03.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Farrell, D. J., Y. Takeda, K. Nishikawa, T. Nagashima, T. Motohiro et N. J. Ekins-Daukes. « A hot-carrier solar cell with optical energy selective contacts ». Applied Physics Letters 99, no 11 (12 septembre 2011) : 111102. http://dx.doi.org/10.1063/1.3636401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Limpert, S., S. Bremner et H. Linke. « Reversible electron–hole separation in a hot carrier solar cell ». New Journal of Physics 17, no 9 (21 septembre 2015) : 095004. http://dx.doi.org/10.1088/1367-2630/17/9/095004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Conibeer, Gavin, Santosh Shrestha, Shujuan Huang, Robert Patterson, Hongze Xia, Yu Feng, Pengfei Zhang et al. « Hot carrier solar cell absorber prerequisites and candidate material systems ». Solar Energy Materials and Solar Cells 135 (avril 2015) : 124–29. http://dx.doi.org/10.1016/j.solmat.2014.11.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Sambur, Justin. « (Invited) Energy Level Alignment and Hot Carrier Extraction in Monolayer Semiconductor Photoelectrochemical Cells ». ECS Meeting Abstracts MA2023-01, no 13 (28 août 2023) : 1300. http://dx.doi.org/10.1149/ma2023-01131300mtgabs.

Texte intégral
Résumé :
The fundamental problem that limits the solar energy conversion efficiency of conventional semiconductors such as Si is that all absorbed photon energy above the band gap is lost as heat. The critical question that our research addresses is: Can we avoid energy losses in semiconductors? Hot-carrier systems that avoid such losses have tremendous potential in photovoltaics and solar fuels production, with theoretical efficiencies of 66% (well above the detailed-balance limit of 33%). Ultrathin 2D semiconductors such as monolayer (ML) MoS2 and WSe2 have unique physical and photophysical properties that could make hot-carrier energy conversion possible. The specific knowledge gap in the field is how the energy levels of 2D semiconductors move with applied potential and/or illumination, making the driving force for charge transfer (DG 0´) unclear. Since DG 0´ governs the hot-carrier extraction rate (k ET), understanding how and why DG 0´ changes under solar fuel generation conditions is critical to controlling k ET relative to the cooling rate. Absence of this critical information is limiting our ability to perform hot-carrier photochemistry. Our research team has employed photocurrent spectroscopy, steady-state absorption spectroscopy, and in situ femtosecond transient absorption spectroscopy as a function of applied potential to characterize underlying steps in a ML MoS2 photoelectrochemical cell. The rich data set informs us on the timescales for hot-carrier generation/cooling and exciton formation/recombination, as well as the magnitudes of changes in exciton energy levels, exciton binding energies, and the electronic band gap. These findings open the possibility of tuning the hot-carrier extraction rate relative to the cooling rate to ultimately utilize hot-carriers for solar energy conversion applications.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Cao, Wenkai, Zewen Zhang, Rob Patterson, Yuan Lin, Xiaoming Wen, Binesh Puthen Veetil, Pengfei Zhang et al. « Quantification of hot carrier thermalization in PbS colloidal quantum dots by power and temperature dependent photoluminescence spectroscopy ». RSC Advances 6, no 93 (2016) : 90846–55. http://dx.doi.org/10.1039/c6ra20165b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Sambur, Justin, Rachelle Austin, Yusef Farah et Amber Krummel. « (Invited) Energy Level Alignment at Monolayer MoS2/Electrolyte Interfaces ». ECS Meeting Abstracts MA2022-01, no 12 (7 juillet 2022) : 864. http://dx.doi.org/10.1149/ma2022-0112864mtgabs.

Texte intégral
Résumé :
The fundamental problem that limits the solar energy conversion efficiency of semiconductors such as CdTe and Si is that all excess solar photon energy above the band gap is lost as heat. Avoiding thermalization energy losses is of paramount significance for solar energy conversion because hot-carrier-based systems theoretically achieve 66% efficiency, which breaks the detailed balance limit of 33%.Of all the candidate materials, 2D semiconductors such as monolayer (ML) MoS2 have unique physical and photophysical properties that could make hot-carrier energy conversion possible. The knowledge gap in the field is that the electronic states of 2D materials move with carrier density, due to either light absorption or an applied electrochemical potential. The energy level movements are significant because the real fundamental driving force for charge transfer (ΔG 0´) is unclear for a given reaction and applied potential. In principle, quantifying ΔG 0´ under working conditions opens up the possibility to tune the hot carrier extraction rate relative to the cooling rate. Our research team has employed photocurrent spectroscopy, steady-state absorption spectroscopy, and in situ femtosecond transient absorption spectroscopy as a function of applied potential to characterize underlying steps in a ML MoS2 photoelectrochemical cell. The rich data set informs us on the timescales for hot-carrier generation/cooling and exciton formation/recombination, as well as the magnitudes of changes in exciton energy levels, exciton binding energies, and the electronic band gap. These findings open the possibility of tuning the hot-carrier extraction rate relative to the cooling rate to ultimately utilize hot-carriers for solar energy conversion applications.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Konovalov, Igor, et Bernd Ploss. « Modeling of hot carrier solar cell with semi-infinite energy filtering ». Solar Energy 185 (juin 2019) : 59–63. http://dx.doi.org/10.1016/j.solener.2019.04.050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Kamide, K. « Current–voltage curves and operational stability in hot-carrier solar cell ». Journal of Applied Physics 127, no 18 (14 mai 2020) : 183102. http://dx.doi.org/10.1063/5.0002934.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Sambur, Justin, Rachelle Austin, Rafael Almaraz, Amber Krummel, Andres Montoya-Castillo, Tom Sayer et Justin Toole. « (Invited) Photoelectrochemistry of Monolayer 2D Semiconductors : Quantifying Band Gap Renormalization Effects and Hot Carrier Extraction ». ECS Meeting Abstracts MA2024-01, no 12 (9 août 2024) : 1015. http://dx.doi.org/10.1149/ma2024-01121015mtgabs.

Texte intégral
Résumé :
The fundamental problem that limits the solar energy conversion efficiency of conventional semiconductors such as Si is that all absorbed photon energy above the band gap is lost as heat. The critical question that our research addresses is: Can we avoid energy losses in semiconductors?Hot-carrier systems that avoid such losses have tremendous potential in photovoltaics and solar fuels production, with theoretical efficiencies of 66% (well above the detailed-balance limit of 33%). Ultrathin 2D semiconductors such as monolayer (ML) MoS2 and WSe2 have unique physical and photophysical properties that could make hot-carrier energy conversion possible. The specific knowledge gap in the field is how the energy levels of 2D semiconductors move with applied potential and/or illumination, making the driving force for charge transfer (ΔG 0´) unclear. Since ΔG 0´ governs the hot-carrier extraction rate (k ET), understanding how and why ΔG 0´ changes under solar fuel generation conditions is critical to controlling k ET relative to the cooling rate. Absence of this critical information is limiting our ability to perform hot-carrier photochemistry. Our research team has employed photocurrent spectroscopy, steady-state absorption spectroscopy, and in situ femtosecond transient absorption spectroscopy as a function of applied potential to characterize underlying steps in a ML MoS2 photoelectrochemical cell. The rich data set informs us on the timescales for hot-carrier generation/cooling and exciton formation/recombination, as well as the magnitudes of changes in exciton energy levels, exciton binding energies, and the electronic band gap. These findings open the possibility of tuning the hot-carrier extraction rate relative to the cooling rate to ultimately utilize hot-carriers for solar energy conversion applications.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Zhang, Yu, ChiYung Yam et George C. Schatz. « Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells ». Journal of Physical Chemistry Letters 7, no 10 (5 mai 2016) : 1852–58. http://dx.doi.org/10.1021/acs.jpclett.6b00879.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Conibeer, G. J., C. W. Jiang, D. König, S. Shrestha, T. Walsh et M. A. Green. « Selective energy contacts for hot carrier solar cells ». Thin Solid Films 516, no 20 (août 2008) : 6968–73. http://dx.doi.org/10.1016/j.tsf.2007.12.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

König, D., K. Casalenuovo, Y. Takeda, G. Conibeer, J. F. Guillemoles, R. Patterson, L. M. Huang et M. A. Green. « Hot carrier solar cells : Principles, materials and design ». Physica E : Low-dimensional Systems and Nanostructures 42, no 10 (septembre 2010) : 2862–66. http://dx.doi.org/10.1016/j.physe.2009.12.032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Shrestha, Santosh K., Pasquale Aliberti et Gavin J. Conibeer. « Energy selective contacts for hot carrier solar cells ». Solar Energy Materials and Solar Cells 94, no 9 (septembre 2010) : 1546–50. http://dx.doi.org/10.1016/j.solmat.2009.11.029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Takeda, Yasuhiko, Tadashi Ito, Tomoyoshi Motohiro, Dirk König, Santosh Shrestha et Gavin Conibeer. « Hot carrier solar cells operating under practical conditions ». Journal of Applied Physics 105, no 7 (avril 2009) : 074905. http://dx.doi.org/10.1063/1.3086447.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Takeda, Yasuhiko. « Intermediate‐band effect in hot‐carrier solar cells ». Progress in Photovoltaics : Research and Applications 27, no 6 (27 mars 2019) : 528–39. http://dx.doi.org/10.1002/pip.3129.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Ašmontas, Steponas, Oleksandr Masalskyi, Ihor Zharchenko, Algirdas Sužiedėlis et Jonas Gradauskas. « Some Aspects of Hot Carrier Photocurrent across GaAs p-n Junction ». Inorganics 12, no 6 (20 juin 2024) : 174. http://dx.doi.org/10.3390/inorganics12060174.

Texte intégral
Résumé :
The photocurrent across crystalline GaAs p-n junction induced by Nd:YAG laser radiation was investigated experimentally. It is established that the displacement current is dominant at reverse and low forward bias voltages in the case of pulsed excitation. This indicates that hot carriers do not have enough energy to overcome the p-n junction until the forward bias significantly reduces the potential barrier. At a sufficiently high forward bias, the photocurrent is determined by the diffusion of hot carriers across the p-n junction. The current–voltage (I-V) characteristics measured at different crystal lattice temperatures show that the heating of carriers by laser radiation increases with a drop in crystal lattice temperature. This study proposes a novel model for evaluating carrier temperature based on the temperature coefficient of the I-V characteristic. It is demonstrated that the heating of carriers by light diminishes the conversion efficiency of a solar cell, not only through thermalisation but also because of the conflicting interactions between the hot carrier and conventional photocurrents, which exhibit opposite polarities. These findings contribute to an understanding of hot carrier phenomena in photovoltaic devices and may prompt a revision of the intrinsic losses in solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Limpert, Steven C., et Stephen P. Bremner. « Hot carrier extraction using energy selective contacts and its impact on the limiting efficiency of a hot carrier solar cell ». Applied Physics Letters 107, no 7 (17 août 2015) : 073902. http://dx.doi.org/10.1063/1.4928750.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Behaghel, B., R. Tamaki, H.-L. Chen, P. Rale, L. Lombez, Y. Shoji, A. Delamarre et al. « A hot-carrier assisted InAs/AlGaAs quantum-dot intermediate-band solar cell ». Semiconductor Science and Technology 34, no 8 (17 juillet 2019) : 084001. http://dx.doi.org/10.1088/1361-6641/ab23d0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wang, Gang, Li Ping Liao, Ahmed Mourtada Elseman, Yan Qing Yao, Chun Yan Lin, Wei Hu, De Bei Liu et al. « An internally photoemitted hot carrier solar cell based on organic-inorganic perovskite ». Nano Energy 68 (février 2020) : 104383. http://dx.doi.org/10.1016/j.nanoen.2019.104383.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Farrell, Daniel J., Hassanet Sodabanlu, Yunpeng Wang, Masakazu Sugiyama et Yoshitaka Okada. « Can a Hot-Carrier Solar Cell also be an Efficient Up-converter ? » IEEE Journal of Photovoltaics 5, no 2 (mars 2015) : 571–76. http://dx.doi.org/10.1109/jphotov.2014.2373817.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Calderón-Muñoz, Williams R., et Cristian Jara-Bravo. « Hydrodynamic modeling of hot-carrier effects in a PN junction solar cell ». Acta Mechanica 227, no 11 (14 janvier 2016) : 3247–60. http://dx.doi.org/10.1007/s00707-015-1538-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Gupta, Ritesh Kant, Rabindranath Garai, Mohammad Adil Afroz et Parameswar Krishnan Iyer. « Regulating active layer thickness and morphology for high performance hot-casted polymer solar cells ». Journal of Materials Chemistry C 8, no 24 (2020) : 8191–98. http://dx.doi.org/10.1039/d0tc00822b.

Texte intégral
Résumé :
Fabrication of high performance polymer solar cells through the hot-casting technique, which modulates the thickness and roughness of the active layer and also the carrier mobility of the solar cell devices.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Wang, Junyi, Youlin Wang, Xiaohang Chen, Jincan Chen et Shanhe Su. « Hot carrier-based near-field thermophotovoltaics with energy selective contacts ». Applied Physics Letters 122, no 12 (20 mars 2023) : 122203. http://dx.doi.org/10.1063/5.0143300.

Texte intégral
Résumé :
A model of the thermophotovoltaic device combining a near-field thermal emitter and a hot-carrier solar cell is established. The fluctuating electromagnetic near-field theory for the radiative thermal transport and Landauer's formula for the carrier extraction are introduced. Expressions for the efficiency and the power output of the device are derived. How the voltage and the extraction energy of the energy selective contacts affect the performance of the device is revealed. The results show that the efficiency of the proposed device can be greatly enhanced by exploiting the radiation between the emitter and the cell and extracting carriers through electron tunneling effects.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Ašmontas, S., J. Gradauskas, A. Sužiedėlis, A. Šilėnas, E. Širmulis, V. Švedas, V. Vaičikauskas et O. Žalys. « Hot carrier impact on photovoltage formation in solar cells ». Applied Physics Letters 113, no 7 (13 août 2018) : 071103. http://dx.doi.org/10.1063/1.5043155.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Ferry, D. K., S. M. Goodnick, V. R. Whiteside et I. R. Sellers. « Challenges, myths, and opportunities in hot carrier solar cells ». Journal of Applied Physics 128, no 22 (14 décembre 2020) : 220903. http://dx.doi.org/10.1063/5.0028981.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Watanabe, Daiki, Naofumi Kasamatsu, Yukihiro Harada et Takashi Kita. « Hot-carrier solar cells using low-dimensional quantum structures ». Applied Physics Letters 105, no 17 (27 octobre 2014) : 171904. http://dx.doi.org/10.1063/1.4900947.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Luque, Antonio, et Antonio Martí. « Electron–phonon energy transfer in hot-carrier solar cells ». Solar Energy Materials and Solar Cells 94, no 2 (février 2010) : 287–96. http://dx.doi.org/10.1016/j.solmat.2009.10.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Le Bris, Arthur, Jean Rodiere, Clément Colin, Stéphane Collin, Jean-Luc Pelouard, Rubén Esteban, Marine Laroche, Jean-Jacques Greffet et Jean-François Guillemoles. « Hot Carrier Solar Cells : Controlling Thermalization in Ultrathin Devices ». IEEE Journal of Photovoltaics 2, no 4 (octobre 2012) : 506–11. http://dx.doi.org/10.1109/jphotov.2012.2207376.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Giteau, Maxime, Daniel Suchet, Stéphane Collin, Jean-François Guillemoles et Yoshitaka Okada. « Detailed balance calculations for hot-carrier solar cells : coupling high absorptivity with low thermalization through light trapping ». EPJ Photovoltaics 10 (2019) : 1. http://dx.doi.org/10.1051/epjpv/2019001.

Texte intégral
Résumé :
Hot-carrier solar cells could enable an efficiency gain compared to conventional cells, provided that a high current can be achieved, together with a hot-carrier population. Because the thermalization rate is proportional to the volume of the absorber, a fundamental requirement is to maximize the density of carriers generated per volume unit. In this work, we focus on the crucial role of light trapping to meet this objective. Using a detailed balance model taking into account losses through a thermalization factor, we obtained parameters of the hot-carrier population generated under continuous illumination. Different absorptions corresponding to different light path enhancements were compared. Results are presented for open-circuit voltage, at maximum power point and as a function of the applied voltage. The relation between the parameters of the cell (thermalization rate and absorptivity) and its characteristics (temperature, chemical potential, and efficiency) is explained. In particular, we clarify the link between absorbed light intensity and chemical potential. Overall, the results give quantitative values for the thermalization coefficient to be achieved and show that in the hot-carrier regime, absorptivity enhancement leads to an important increase in the carrier temperature and efficiency.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Chen, Yuzhong, Yujie Li, Yida Zhao, Hongzhi Zhou et Haiming Zhu. « Highly efficient hot electron harvesting from graphene before electron-hole thermalization ». Science Advances 5, no 11 (novembre 2019) : eaax9958. http://dx.doi.org/10.1126/sciadv.aax9958.

Texte intégral
Résumé :
Although the unique hot carrier characteristics in graphene suggest a new paradigm for hot carrier–based energy harvesting, the reported efficiencies with conventional photothermoelectric and photothermionic emission pathways are quite low because of inevitable hot carrier thermalization and cooling loss. Here, we proposed and demonstrated the possibility of efficiently extracting hot electrons from graphene after carrier intraband scattering but before electron-hole interband thermalization, a new regime that has never been reached before. Using various layered semiconductors as model electron-accepting components, we generally observe ultrafast injection of energetic hot electrons from graphene over a very broad photon energy range (visible to mid-infrared). The injection quantum yield reaches as high as ~50%, depending on excitation energy but remarkably, not on fluence, in notable contrast with conventional pathways with nonlinear behavior. Hot electron harvesting in this regime prevails over energy and carrier loss and closely resembles the concept of hot carrier solar cell.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Chen Shuhan, 陈舒涵, 刘晓春 Liu Xiaochun, 王丽娜 Wang Lina et 弓爵 Gong Jue. « 钙钛矿材料在热载流子太阳能电池中的研究进展 ». Laser & ; Optoelectronics Progress 60, no 13 (2023) : 1316021. http://dx.doi.org/10.3788/lop230819.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Kahmann, Simon, et Maria A. Loi. « Hot carrier solar cells and the potential of perovskites for breaking the Shockley–Queisser limit ». Journal of Materials Chemistry C 7, no 9 (2019) : 2471–86. http://dx.doi.org/10.1039/c8tc04641g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Gradauskas, J., O. Masalskyi, S. Asmontas, A. Suziedelis, A. Rodin et I. Zharchenko. « HOT CARRIER PHOTOCURRENT AS AN INTRINSIC LOSS IN A SINGLE JUNCTION SOLAR CELL ». Ukrainian Journal of Physical Optics 25, no 1 (2024) : 01106–12. http://dx.doi.org/10.3116/16091833/ukr.j.phys.opt.2024.01106.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie