Littérature scientifique sur le sujet « Holographic subsurface RADAR »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Holographic subsurface RADAR ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Holographic subsurface RADAR"

1

Kopeikin, V. V., et A. V. Popov. « Design concepts of the holographic subsurface radar ». Radiophysics and Quantum Electronics 43, no 3 (mars 2000) : 202–10. http://dx.doi.org/10.1007/bf02677184.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ivashov, Sergey I., Lorenzo Capineri, Timothy D. Bechtel, Vladimir V. Razevig, Masaharu Inagaki, Nikolay L. Gueorguiev et Ahmet Kizilay. « Design and Applications of Multi-Frequency Holographic Subsurface Radar : Review and Case Histories ». Remote Sensing 13, no 17 (2 septembre 2021) : 3487. http://dx.doi.org/10.3390/rs13173487.

Texte intégral
Résumé :
Holographic subsurface radar (HSR) is not currently in widespread usage. This is due to a historical perspective in the ground-penetrating radar (GPR) community that the high attenuation of electromagnetic waves in most media of interest and the inability to apply time-varying gain to the continuous-wave (CW) HSR signal preclude sufficient effective penetration depth. While it is true that the fundamental physics of HSR, with its use of a CW signal, does not allow amplification of later (i.e., deeper) arrivals in lossy media (as is possible with impulse subsurface radar (ISR)), HSR has distinct advantages. The most important of these is the ability to do shallow subsurface imaging with a resolution that is not possible with ISR. In addition, the design of an HSR system is simpler than for ISR due to the relatively low-tech transmitting and receiving antennae. This paper provides a review of the main principles of HSR through an optical analogy and describes possible algorithms for radar hologram reconstruction. We also present a review of the history of development of systems and applications of the RASCAN type, which is possibly the only commercially available holographic subsurface radar. Among the subsurface imaging and remote sensing applications considered are humanitarian demining, construction inspection, nondestructive testing of dielectric aerospace materials, surveys of historic architecture and artworks, paleontology, and security screening. Each application is illustrated with relevant data acquired in laboratory and/or field experiments.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bossi, Luca, Pierluigi Falorni et Lorenzo Capineri. « Versatile Electronics for Microwave Holographic RADAR Based on Software Defined Radio Technology ». Electronics 11, no 18 (12 septembre 2022) : 2883. http://dx.doi.org/10.3390/electronics11182883.

Texte intégral
Résumé :
The NATO SPS G-5014 project has shown the possibility of using a holographic RADAR for the detection of anti-personnel mines. To use the RADAR on a robotic scanning system, it must be portable, light, easily integrated with mechanical handling systems and configurable in its operating parameters for optimal performance on different terrains. The novel contribution is to use software programmable electronics to optimize performance and to use a time reference to obtain synchronization between the RADAR samples and the position in space, in order to make it easy to integrate the RADAR on robotic platforms. To achieve these goals we used the Analog Devices “ADALM Pluto” device based on Software Defined Radio technology and a time server. We have obtained a portable system, configurable via software in all its operating parameters and easily integrated on robotic scanning platforms. The paper will show experiments performed on a simulated minefield. The electronics project reported in this work makes holographic RADARs portable and easily reconfigurable, therefore adaptable to different applications from subsurface soil investigations to applications in the field of non-destructive testings.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ivashov, Sergey I., Vladimir V. Razevig, Igor A. Vasiliev, Andrey V. Zhuravlev, Timothy D. Bechtel et Lorenzo Capineri. « Holographic Subsurface Radar of RASCAN Type : Development and Applications ». IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 4, no 4 (décembre 2011) : 763–78. http://dx.doi.org/10.1109/jstars.2011.2161755.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Popov, A. V., A. E. Reznikov, A. I. Berkut, D. E. Edemsky, P. A. Morozov et I. V. Prokopovich. « Methods and Algorithms of Subsurface Holographic Sounding ». Remote Sensing 14, no 20 (21 octobre 2022) : 5274. http://dx.doi.org/10.3390/rs14205274.

Texte intégral
Résumé :
In our experiments, we develop and test portable multi-element receiver antenna arrays, electrically scanned in order to immediately obtain a recognizable image of subsurface objects. Two quadrature components of the radar return signal are processed with a Kirchhoff backward migration algorithm. Physical theory is used to assess the quality of the holographic image, and the synthetic aperture approach is developed and tested. The parabolic wave equation and Gaussian beam technique are used in order to take into account refraction effects and to suppress specular reflection from the air-ground interface. Laboratory and field tests confirmed the predicted device parameters.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Popov, A. V., A. E. Reznikov, A. I. Berkut, D. E. Edemsky, P. A. Morozov et I. V. Prokopovich. « Methods and Algorithms of Subsurface Holographic Sounding ». Remote Sensing 14, no 20 (21 octobre 2022) : 5274. http://dx.doi.org/10.3390/rs14205274.

Texte intégral
Résumé :
In our experiments, we develop and test portable multi-element receiver antenna arrays, electrically scanned in order to immediately obtain a recognizable image of subsurface objects. Two quadrature components of the radar return signal are processed with a Kirchhoff backward migration algorithm. Physical theory is used to assess the quality of the holographic image, and the synthetic aperture approach is developed and tested. The parabolic wave equation and Gaussian beam technique are used in order to take into account refraction effects and to suppress specular reflection from the air-ground interface. Laboratory and field tests confirmed the predicted device parameters.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Popov, A. V., A. E. Reznikov, A. I. Berkut, D. E. Edemsky, P. A. Morozov et I. V. Prokopovich. « Methods and Algorithms of Subsurface Holographic Sounding ». Remote Sensing 14, no 20 (21 octobre 2022) : 5274. http://dx.doi.org/10.3390/rs14205274.

Texte intégral
Résumé :
In our experiments, we develop and test portable multi-element receiver antenna arrays, electrically scanned in order to immediately obtain a recognizable image of subsurface objects. Two quadrature components of the radar return signal are processed with a Kirchhoff backward migration algorithm. Physical theory is used to assess the quality of the holographic image, and the synthetic aperture approach is developed and tested. The parabolic wave equation and Gaussian beam technique are used in order to take into account refraction effects and to suppress specular reflection from the air-ground interface. Laboratory and field tests confirmed the predicted device parameters.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Popov, A. V., A. E. Reznikov, A. I. Berkut, D. E. Edemsky, P. A. Morozov et I. V. Prokopovich. « Methods and Algorithms of Subsurface Holographic Sounding ». Remote Sensing 14, no 20 (21 octobre 2022) : 5274. http://dx.doi.org/10.3390/rs14205274.

Texte intégral
Résumé :
In our experiments, we develop and test portable multi-element receiver antenna arrays, electrically scanned in order to immediately obtain a recognizable image of subsurface objects. Two quadrature components of the radar return signal are processed with a Kirchhoff backward migration algorithm. Physical theory is used to assess the quality of the holographic image, and the synthetic aperture approach is developed and tested. The parabolic wave equation and Gaussian beam technique are used in order to take into account refraction effects and to suppress specular reflection from the air-ground interface. Laboratory and field tests confirmed the predicted device parameters.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Popov, A. V., A. E. Reznikov, A. I. Berkut, D. E. Edemsky, P. A. Morozov et I. V. Prokopovich. « Methods and Algorithms of Subsurface Holographic Sounding ». Remote Sensing 14, no 20 (21 octobre 2022) : 5274. http://dx.doi.org/10.3390/rs14205274.

Texte intégral
Résumé :
In our experiments, we develop and test portable multi-element receiver antenna arrays, electrically scanned in order to immediately obtain a recognizable image of subsurface objects. Two quadrature components of the radar return signal are processed with a Kirchhoff backward migration algorithm. Physical theory is used to assess the quality of the holographic image, and the synthetic aperture approach is developed and tested. The parabolic wave equation and Gaussian beam technique are used in order to take into account refraction effects and to suppress specular reflection from the air-ground interface. Laboratory and field tests confirmed the predicted device parameters.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Popov, A. V., A. E. Reznikov, A. I. Berkut, D. E. Edemsky, P. A. Morozov et I. V. Prokopovich. « Methods and Algorithms of Subsurface Holographic Sounding ». Remote Sensing 14, no 20 (21 octobre 2022) : 5274. http://dx.doi.org/10.3390/rs14205274.

Texte intégral
Résumé :
In our experiments, we develop and test portable multi-element receiver antenna arrays, electrically scanned in order to immediately obtain a recognizable image of subsurface objects. Two quadrature components of the radar return signal are processed with a Kirchhoff backward migration algorithm. Physical theory is used to assess the quality of the holographic image, and the synthetic aperture approach is developed and tested. The parabolic wave equation and Gaussian beam technique are used in order to take into account refraction effects and to suppress specular reflection from the air-ground interface. Laboratory and field tests confirmed the predicted device parameters.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Holographic subsurface RADAR"

1

Bossi, Luca. « A novel microwave imaging RADAR for anti-personnel landmine detection and its integration on a multi-sensor robotic scanner ». Doctoral thesis, 2022. http://hdl.handle.net/2158/1272665.

Texte intégral
Résumé :
Per mezzo del finanziamento ottenuto con il progetto North Atlantic Treaty Organization, Science for Peace and Security (NATO SPS) G-5014 è stata sviluppata una piattaforma robotica multi-sensore in grado di individuare oggetti sepolti plastici e metallici e generare dati per la successiva classificazione degli ordigni attraverso l’analisi di operatori specializzati. Utilizzare una piattaforma robotica permette di aumentare la sicurezza per gli operatori, perché completamente controllabile in remoto tramite un’interfaccia software web e permette di utilizzare diversi sensori per massimizzare la probabilità di rivelazione delle mine, mantenendo minima la probabilità di ricevere falsi allarmi. I sensori principali installati sono due RADAR operanti nello spettro delle microonde ( ≃2 GHz): un UWB Ground Penetrating RADAR (GPR), sviluppato appositamente per rilevare la posizione dell’oggetto sepolto all’interno dell’area illuminata, capace di rilevare oggetti sepolti durante il moto della piattaforma e un Holographic Subsurface RADAR (HSR), operante ad onda continua e singola frequenza, in grado di generare immagini olografiche che permettono di osservare la forma e le dimensioni degli oggetti sepolti nei primi 15 - 20 cm del sottosuolo e, tramite l’elaborazione con algoritmi di inversione del campo elettromegnetico, permette di ricostruire la scena tridimensionale che si trova di fronte all’apertura sintetica del RADAR. Le immagini che genera questo dispositivo consentono di discriminare gli ordigni da altri oggetti riflettenti le microonde ma del tutto inoffensivi (clutter). Il HSR progettato nel corso del progetto NATO SPS G-5014 costituisce un primo prototipo che soddisfava i requisiti richiesti dal progetto. Il frutto di questo lavoro ha riscosso interesse nella comunità scentifica e presso NATO SPS, generando un seguito: il progetto NATO SPS G-5731, tutt’ora in corso. Nell’ambito di quest’ultimo progetto si colloca il mio lavoro: ho contribuito allo sviluppo di un sistema RADAR per immagini a microonde in grado di migliorare, in termini di qualità di immagini prodotte (incrementando il rapporto segnale-rumore e la risoluzione) e di profondità di penetrazione (studiando le caratteristiche elettromagnetiche del suolo di interesse), le prestazioni del HSR. Mi sono occupato di individuare i parametri su cui poter intervenire: la risoluzione ottenibile applicando la matematica dell’olografia, le tecniche e gli algoritmi di inversione del campo elettromagnetico, lo studio dell’ambiente elettromagnetico irradiato e i requisiti dell’elemento radiante (tipo di antenna, forma, dimensioni, potenza irradiata) reailzzandone uno con la tecnologia della stampa tridimensionale. Ho valutato e studiato una soluzione per migliorare la compatibilità elettromagnetica con il sistema robotico su cui dovrà operare il RADAR. Per realizzare un prototipo funzionante mi sono occupato di definire i requisiti dell’elettronica di pilotaggio e della programmazione dei dispositivi implementati. Questo testo si conclude con la dimostrazione, mediante l’esposizione di prove sperimentali in ambiente controllato, delle prestazioni del nuovo RADAR, evidenziandone le differenze rispetto al HSR originale. ------------- Thanks to the funding obtained with the North Atlantic Treaty Organization, Science for Peace and Security (NATO SPS) G-5014 project, a multi-sensor robotic platform was developed capable of identifying buried plastic and metal objects and generating data for subsequent classification. of ordnance through the analysis of specialized operators. Using a robotic platform allows you to increase safety for operators, because it can be completely remotely controlled via a web software interface and allows you to use different sensors to maximize the probability of mine detection, while keeping the probability of receiving false alarms to a minimum. The main sensors installed are two RADARs operating in the microwave spectrum (≃2 GHz): a UWB Ground Penetrating RADAR (GPR), specially developed to detect the position of the buried object within the illuminated area, capable of detecting buried objects during the motion of the platform and a Holographic Subsurface RADAR (HSR), operating at continuous wave and single frequency, capable of generating holographic images that allow to observe the shape and dimensions of the objects buried in the first 15 - 20 cm of the subsoil and, through the processing with electromagnetic field inversion algorithms, it allows to reconstruct the three-dimensional scene that is in front of the synthetic opening of the RADAR. The images that this device generates allow to discriminate the bombs from other objects reflecting the microwaves but completely harmless (clutter). The HSR designed during the NATO SPS G-5014 project constitutes a first prototype that met the requirements of the project. The fruit of this work has attracted interest in the scientific community and at NATO SPS, generating a sequel: the NATO SPS G-5731 project, which is still underway. My work is part of this last project: I contributed to the development of a RADAR system for microwave images capable of improving, in terms of the quality of images produced (by increasing the signal-to-noise ratio and resolution) and depth of penetration (studying the electromagnetic characteristics of the soil of interest), the performance of the HSR. I worked on identifying the parameters on which to intervene: the resolution obtainable by applying the mathematics of holography, the techniques and algorithms of electromagnetic field inversion, the study of the radiated electromagnetic environment and the requirements of the radiant element (type of antenna , shape, size, radiated power) by realizing one with the technology of three-dimensional printing. I have evaluated and studied a solution to improve the electromagnetic compatibility with the robotic system on which the RADAR will have to operate. To create a working prototype, I worked on defining the requirements of the driving electronics and programming of the implemented devices. This text ends with the demonstration, through the display of experimental tests in a controlled environment, of the performance of the new RADAR, highlighting the differences compared to the original HSR.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Holographic subsurface RADAR"

1

Ivashov, S. I., V. V. Razevig, I. A. Vasiliev, A. V. Zhuravlev, T. Bechtel, L. Capineri, P. Falorni et T. Lu. « Holographic Subsurface Radar as a Device for NDT of Construction Materials and Structures ». Dans Nondestructive Testing of Materials and Structures, 799–804. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0723-8_114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ivashov, Sergey, Lorenzo Capineri et Timothy Bechtel. « Holographic Subsurface Radar Technology and Applications ». Dans Ultrawideband Radar, 421–44. CRC Press, 2012. http://dx.doi.org/10.1201/b12356-14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Xu, S., M. Lu, C. Huang et Y. Su. « Detection of radome defects with a new Holographic Subsurface Imaging Radar system ». Dans Advanced Materials and Structural Engineering, 747–50. CRC Press, 2016. http://dx.doi.org/10.1201/b20958-155.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Holographic subsurface RADAR"

1

Popov, Alexei V., Vladimir V. Kopeykin et Vladimir A. Vinogradov. « Holographic subsurface radar : numerical simulation ». Dans 8th International Conference on Ground Penetrating Radar, sous la direction de David A. Noon, Glen F. Stickley et Dennis Longstaff. SPIE, 2000. http://dx.doi.org/10.1117/12.383578.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhuravlev, A. V., S. I. Ivashov, V. V. Razevig, I. A. Vasiliev et A. S. Bugaev. « Holographic subsurface radar RASCAN-5 ». Dans 2013 7th International Workshop on Advanced Ground Penetrating Radar (IWAGPR). IEEE, 2013. http://dx.doi.org/10.1109/iwagpr.2013.6601548.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zhuravlev, A., S. Ivashov, I. Vasiliev et V. Razevig. « Processing of holographic subsurface radar data ». Dans 2012 14th International Conference on Ground Penetrating Radar (GPR). IEEE, 2012. http://dx.doi.org/10.1109/icgpr.2012.6254833.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chunlin Huang, Tao Liu, Min Lu et Yi Su. « Holographic subsurface imaging for medical detection ». Dans 15th International Conference on Ground-Penetrating Radar (GPR) 2014. IEEE, 2014. http://dx.doi.org/10.1109/icgpr.2014.6970506.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhuravlev, A. V., A. Kizilay, V. V. Razevig, A. S. Türk, S. I. Ivashov et I. A. Vasiliev. « Holographic subsurface imaging radar for applications in civil engineering ». Dans IET International Radar Conference 2013. Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/cp.2013.0111.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zhuravlev, A., S. Ivashov, V. Razevig, I. Vasiliev et A. Bugaev. « Automated data acquisition system for holographic subsurface radar ». Dans 15th International Conference on Ground-Penetrating Radar (GPR) 2014. IEEE, 2014. http://dx.doi.org/10.1109/icgpr.2014.6970543.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhuravlev, Andrey, Vladimir Razevig, Margarita Chizh, Maxim Filippov et Sergey Ivashov. « Inspection of foam insulation by holographic subsurface radar ». Dans 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). IEEE, 2017. http://dx.doi.org/10.1109/comcas.2017.8244739.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Razevig, V. V., S. I. Ivashov, I. A. Vasiliev, A. V. Zhuravlev, T. Bechtel et L. Capineri. « Advantages and restrictions of holographic subsurface radars ». Dans 2010 13th International Conference on Ground Penetrating Radar (GPR 2010). IEEE, 2010. http://dx.doi.org/10.1109/icgpr.2010.5550241.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Flores-Tapia, Daniel, Oleksandr Maizlish, Clive M. Alabaster et Stephen Pistorius. « A holographic reconstruction method for circular multistatic subsurface radar ». Dans 2012 International Waveform Diversity & Design Conference (WDD). IEEE, 2012. http://dx.doi.org/10.1109/wdd.2012.7311268.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Li, Mintai, et Chunlin Huang. « Research on Spherical Subsurface Imaging with Holographic Penetrating Radar ». Dans 2016 5th International Conference on Environment, Materials, Chemistry and Power Electronics. Paris, France : Atlantis Press, 2016. http://dx.doi.org/10.2991/emcpe-16.2016.108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie