Littérature scientifique sur le sujet « Hilbert spaces »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Hilbert spaces ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Hilbert spaces"
Sharma, Sumit Kumar, et Shashank Goel. « Frames in Quaternionic Hilbert Spaces ». Zurnal matematiceskoj fiziki, analiza, geometrii 15, no 3 (25 juin 2019) : 395–411. http://dx.doi.org/10.15407/mag15.03.395.
Texte intégralBellomonte, Giorgia, et Camillo Trapani. « Rigged Hilbert spaces and contractive families of Hilbert spaces ». Monatshefte für Mathematik 164, no 3 (8 octobre 2010) : 271–85. http://dx.doi.org/10.1007/s00605-010-0249-1.
Texte intégralSánchez, Félix Cabello. « Twisted Hilbert spaces ». Bulletin of the Australian Mathematical Society 59, no 2 (avril 1999) : 177–80. http://dx.doi.org/10.1017/s0004972700032792.
Texte intégralCHITESCU, ION, RAZVAN-CORNEL SFETCU et OANA COJOCARU. « Kothe-Bochner spaces that are Hilbert spaces ». Carpathian Journal of Mathematics 33, no 2 (2017) : 161–68. http://dx.doi.org/10.37193/cjm.2017.02.03.
Texte intégralPisier, Gilles. « Weak Hilbert Spaces ». Proceedings of the London Mathematical Society s3-56, no 3 (mai 1988) : 547–79. http://dx.doi.org/10.1112/plms/s3-56.3.547.
Texte intégralFabian, M., G. Godefroy, P. Hájek et V. Zizler. « Hilbert-generated spaces ». Journal of Functional Analysis 200, no 2 (juin 2003) : 301–23. http://dx.doi.org/10.1016/s0022-1236(03)00044-2.
Texte intégralRudolph, Oliver. « Super Hilbert Spaces ». Communications in Mathematical Physics 214, no 2 (novembre 2000) : 449–67. http://dx.doi.org/10.1007/s002200000281.
Texte intégralNg, Chi-Keung. « Topologized Hilbert spaces ». Journal of Mathematical Analysis and Applications 418, no 1 (octobre 2014) : 108–20. http://dx.doi.org/10.1016/j.jmaa.2014.03.073.
Texte intégralvan den Boogaart, Karl Gerald, Juan José Egozcue et Vera Pawlowsky-Glahn. « Bayes Hilbert Spaces ». Australian & ; New Zealand Journal of Statistics 56, no 2 (juin 2014) : 171–94. http://dx.doi.org/10.1111/anzs.12074.
Texte intégralSchmitt, L. M. « Semidiscrete Hilbert spaces ». Acta Mathematica Hungarica 53, no 1-2 (mars 1989) : 103–7. http://dx.doi.org/10.1007/bf02170059.
Texte intégralThèses sur le sujet "Hilbert spaces"
Wigestrand, Jan. « Inequalities in Hilbert Spaces ». Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9673.
Texte intégralThe main result in this thesis is a new generalization of Selberg's inequality in Hilbert spaces with a proof. In Chapter 1 we define Hilbert spaces and give a proof of the Cauchy-Schwarz inequality and the Bessel inequality. As an example of application of the Cauchy-Schwarz inequality and the Bessel inequality, we give an estimate for the dimension of an eigenspace of an integral operator. Next we give a proof of Selberg's inequality including the equality conditions following [Furuta]. In Chapter 2 we give selected facts on positive semidefinite matrices with proofs or references. Then we use this theory for positive semidefinite matrices to study inequalities. First we give a proof of a generalized Bessel inequality following [Akhiezer,Glazman], then we use the same technique to give a new proof of Selberg's inequality. We conclude with a new generalization of Selberg's inequality with a proof. In the last section of Chapter 2 we show how the matrix approach developed in Chapter 2.1 and Chapter 2.2 can be used to obtain optimal frame bounds. We introduce a new notation for frame bounds.
Ameur, Yacin. « Interpolation of Hilbert spaces ». Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1753.
Texte intégralAmeur, Yacin. « Interpolation of Hilbert spaces / ». Uppsala : Matematiska institutionen, Univ. [distributör], 2001. http://publications.uu.se/theses/91-506-1531-9/.
Texte intégralPanayotov, Ivo. « Conjugate gradient in Hilbert spaces ». Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82402.
Texte intégralBahmani, Fatemeh. « Ternary structures in Hilbert spaces ». Thesis, Queen Mary, University of London, 2011. http://qmro.qmul.ac.uk/xmlui/handle/123456789/697.
Texte intégralDas, Tushar. « Kleinian Groups in Hilbert Spaces ». Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149579/.
Texte intégralHarris, Terri Joan Mrs. « HILBERT SPACES AND FOURIER SERIES ». CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/244.
Texte intégralDieuleveut, Aymeric. « Stochastic approximation in Hilbert spaces ». Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE059/document.
Texte intégralThe goal of supervised machine learning is to infer relationships between a phenomenon one seeks to predict and “explanatory” variables. To that end, multiple occurrences of the phenomenon are observed, from which a prediction rule is constructed. The last two decades have witnessed the apparition of very large data-sets, both in terms of the number of observations (e.g., in image analysis) and in terms of the number of explanatory variables (e.g., in genetics). This has raised two challenges: first, avoiding the pitfall of over-fitting, especially when the number of explanatory variables is much higher than the number of observations; and second, dealing with the computational constraints, such as when the mere resolution of a linear system becomes a difficulty of its own. Algorithms that take their roots in stochastic approximation methods tackle both of these difficulties simultaneously: these stochastic methods dramatically reduce the computational cost, without degrading the quality of the proposed prediction rule, and they can naturally avoid over-fitting. As a consequence, the core of this thesis will be the study of stochastic gradient methods. The popular parametric methods give predictors which are linear functions of a set ofexplanatory variables. However, they often result in an imprecise approximation of the underlying statistical structure. In the non-parametric setting, which is paramount in this thesis, this restriction is lifted. The class of functions from which the predictor is proposed depends on the observations. In practice, these methods have multiple purposes, and are essential for learning with non-vectorial data, which can be mapped onto a vector in a functional space using a positive definite kernel. This allows to use algorithms designed for vectorial data, but requires the analysis to be made in the non-parametric associated space: the reproducing kernel Hilbert space. Moreover, the analysis of non-parametric regression also sheds some light on the parametric setting when the number of predictors is much larger than the number of observations. The first contribution of this thesis is to provide a detailed analysis of stochastic approximation in the non-parametric setting, precisely in reproducing kernel Hilbert spaces. This analysis proves optimal convergence rates for the averaged stochastic gradient descent algorithm. As we take special care in using minimal assumptions, it applies to numerous situations, and covers both the settings in which the number of observations is known a priori, and situations in which the learning algorithm works in an on-line fashion. The second contribution is an algorithm based on acceleration, which converges at optimal speed, both from the optimization point of view and from the statistical one. In the non-parametric setting, this can improve the convergence rate up to optimality, even inparticular regimes for which the first algorithm remains sub-optimal. Finally, the third contribution of the thesis consists in an extension of the framework beyond the least-square loss. The stochastic gradient descent algorithm is analyzed as a Markov chain. This point of view leads to an intuitive and insightful interpretation, that outlines the differences between the quadratic setting and the more general setting. A simple method resulting in provable improvements in the convergence is then proposed
Boralugoda, Sanath Kumara. « Prox-regular functions in Hilbert spaces ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0006/NQ34740.pdf.
Texte intégralLapinski, Felicia. « Hilbert spaces and the Spectral theorem ». Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454412.
Texte intégralLivres sur le sujet "Hilbert spaces"
Gaussian Hilbert spaces. Cambridge, U.K : Cambridge University Press, 1997.
Trouver le texte intégralDebnath, Lokenath. Hilbert spaces with applications. 3e éd. Oxford : Academic, 2005.
Trouver le texte intégralMlak, W. Hilbert spaces and operator theory. Dordrecht : Boston, 1991.
Trouver le texte intégralMashreghi, Javad. Hilbert spaces of analytic functions. Providence, R.I : American Mathematical Society, 2010.
Trouver le texte intégralMashreghi, Javad. Hilbert spaces of analytic functions. Providence, R.I : American Mathematical Society, 2010.
Trouver le texte intégralJavad, Mashreghi, Ransford Thomas et Seip Kristian 1962-, dir. Hilbert spaces of analytic functions. Providence, R.I : American Mathematical Society, 2010.
Trouver le texte intégralBanach-Hilbert spaces, vector measures, and group representations. River Edge, NJ : World Scientific, 2002.
Trouver le texte intégralSarason, Donald. Sub-Hardy Hilbert spaces in the unit disk. New York : Wiley, 1994.
Trouver le texte intégralSimon, Jacques. Banach, Fréchet, Hilbert and Neumann Spaces. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119426516.
Texte intégral1964-, McCarthy John E., dir. Pick interpolation and Hilbert function spaces. Providence, R.I : American Mathematical Society, 2002.
Trouver le texte intégralChapitres de livres sur le sujet "Hilbert spaces"
D’Angelo, John P. « Hilbert Spaces ». Dans Hermitian Analysis, 45–94. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8526-1_2.
Texte intégralRoman, Steven. « Hilbert Spaces ». Dans Advanced Linear Algebra, 263–90. New York, NY : Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2178-2_14.
Texte intégralOvchinnikov, Sergei. « Hilbert Spaces ». Dans Universitext, 149–91. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91512-8_7.
Texte intégralCicogna, Giampaolo. « Hilbert Spaces ». Dans Undergraduate Lecture Notes in Physics, 1–55. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76165-7_1.
Texte intégralGasquet, Claude, et Patrick Witomski. « Hilbert Spaces ». Dans Texts in Applied Mathematics, 141–52. New York, NY : Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1598-1_16.
Texte intégralKomornik, Vilmos. « Hilbert Spaces ». Dans Lectures on Functional Analysis and the Lebesgue Integral, 3–54. London : Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6811-9_1.
Texte intégralShima, Hiroyuki, et Tsuneyoshi Nakayama. « Hilbert Spaces ». Dans Higher Mathematics for Physics and Engineering, 73–99. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/b138494_4.
Texte intégralvan der Vaart, Aad W., et Jon A. Wellner. « Hilbert Spaces ». Dans Weak Convergence and Empirical Processes, 49–51. New York, NY : Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2545-2_8.
Texte intégralBrokate, Martin, et Götz Kersting. « Hilbert Spaces ». Dans Compact Textbooks in Mathematics, 137–52. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15365-0_12.
Texte intégralKubrusly, Carlos S. « Hilbert Spaces ». Dans Elements of Operator Theory, 311–440. Boston, MA : Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4757-3328-0_5.
Texte intégralActes de conférences sur le sujet "Hilbert spaces"
RANDRIANANTOANINA, BEATA. « A CHARACTERIZATION OF HILBERT SPACES ». Dans Proceedings of the Sixth Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704450_0021.
Texte intégralTaddei, Valentina, Luisa Malaguti et Irene Benedetti. « Nonlocal problems in Hilbert spaces ». Dans The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0103.
Texte intégralTang, Wai-Shing. « Biorthogonality and multiwavelets in Hilbert spaces ». Dans International Symposium on Optical Science and Technology, sous la direction de Akram Aldroubi, Andrew F. Laine et Michael A. Unser. SPIE, 2000. http://dx.doi.org/10.1117/12.408620.
Texte intégralPope, Graeme, et Helmut Bolcskei. « Sparse signal recovery in Hilbert spaces ». Dans 2012 IEEE International Symposium on Information Theory - ISIT. IEEE, 2012. http://dx.doi.org/10.1109/isit.2012.6283506.
Texte intégralMałkiewicz, Przemysław. « Physical Hilbert spaces in quantum gravity ». Dans Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0514.
Texte intégralKhimshiashvili, G. « Loop spaces and Riemann-Hilbert problems ». Dans Geometry and Topology of Manifolds. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-19.
Texte intégralDeepshikha, Saakshi Garg, Lalit K. Vashisht et Geetika Verma. « On weaving fusion frames for Hilbert spaces ». Dans 2017 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2017. http://dx.doi.org/10.1109/sampta.2017.8024363.
Texte intégralGritsutenko, Stanislav, Elina Biberdorf et Rui Dinis. « On the Sampling Theorem in Hilbert Spaces ». Dans Computer Graphics and Imaging. Calgary,AB,Canada : ACTAPRESS, 2013. http://dx.doi.org/10.2316/p.2013.798-012.
Texte intégralTuia, Devis, Gustavo Camps-Valls et Manel Martinez-Ramon. « Explicit recursivity into reproducing kernel Hilbert spaces ». Dans ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5947266.
Texte intégralSUQUET, CHARLES. « REPRODUCING KERNEL HILBERT SPACES AND RANDOM MEASURES ». Dans Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0013.
Texte intégralRapports d'organisations sur le sujet "Hilbert spaces"
Saraivanov, Michael. Quantum Circuit Synthesis using Group Decomposition and Hilbert Spaces. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.1108.
Texte intégralKorezlioglu, H., et C. Martias. Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision. Fort Belvoir, VA : Defense Technical Information Center, mars 1986. http://dx.doi.org/10.21236/ada168501.
Texte intégralFukumizu, Kenji, Francis R. Bach et Michael I. Jordan. Dimensionality Reduction for Supervised Learning With Reproducing Kernel Hilbert Spaces. Fort Belvoir, VA : Defense Technical Information Center, mai 2003. http://dx.doi.org/10.21236/ada446572.
Texte intégralTeolis, Anthony. Discrete Representation of Signals from Infinite Dimensional Hilbert Spaces with Application to Noise Suppression and Compression. Fort Belvoir, VA : Defense Technical Information Center, janvier 1993. http://dx.doi.org/10.21236/ada453215.
Texte intégralSalamon, Dietmar. Realization Theory in Hilbert Space. Fort Belvoir, VA : Defense Technical Information Center, juillet 1985. http://dx.doi.org/10.21236/ada158172.
Texte intégralYao, Jen-Chih. A monotone complementarity problem in Hilbert space. Office of Scientific and Technical Information (OSTI), avril 1990. http://dx.doi.org/10.2172/7043013.
Texte intégralYao, Jen-Chih. A generalized complementarity problem in Hilbert space. Office of Scientific and Technical Information (OSTI), mars 1990. http://dx.doi.org/10.2172/6930669.
Texte intégralCottle, Richard W., et Jen-Chih Yao. Pseudo-Monotone Complementarity Problems in Hilbert Space. Fort Belvoir, VA : Defense Technical Information Center, juillet 1990. http://dx.doi.org/10.21236/ada226477.
Texte intégralKallianpur, G., et V. Perez-Abreu. Stochastic Evolution Equations with Values on the Dual of a Countably Hilbert Nuclear Space. Fort Belvoir, VA : Defense Technical Information Center, juillet 1986. http://dx.doi.org/10.21236/ada174876.
Texte intégralMonrad, D., et W. Philipp. Nearby Variables with Nearby Conditional Laws and a Strong Approximation Theorem for Hilbert Space Valued Martingales. Fort Belvoir, VA : Defense Technical Information Center, avril 1989. http://dx.doi.org/10.21236/ada225992.
Texte intégral