Thèses sur le sujet « Higher dimensional General Relativity »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 23 meilleures thèses pour votre recherche sur le sujet « Higher dimensional General Relativity ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Durkee, Mark N. « New approaches to higher-dimensional general relativity ». Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/240580.
Texte intégralCook, William. « Numerical relativity in higher dimensional spacetimes ». Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277718.
Texte intégralShaker, Jomaa K. M. A. « Algebraic computing in general relativity and supergravity : space-time embeddings and higher dimensional theories ». Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/37849.
Texte intégralDi, Dato Adriana. « Correspondences in higher-dimensional gravity ». Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/384541.
Texte intégralEsta tesis se centra principalmente en el estudio de la gravedad en dimensiones superiores con un enfoque en las relaciones entre diferentes tipos de espaciotiempo y el análisis y caracterización de agujeros negros. Para este último objetivo hemos desarrollado y adaptado teorías efectivas que nos permiten estudiar la dinámica de agujeros negros en ciertos regímenes. Hemos presentado dos de ellas: la "fluid/gravity correspondence" y el metodo de "blackfold". Se puede demostrar entonces que los agujero negros admiten una descripción hidrodinámica y se puede calcular el tensor energía-impulso asociado al fluido dual al agujero negro y extraer los coeficientes de transporte al primer orden en derivadas. Hemos utilizado estas técnicas para analizar propiedades hidrodinámicas de branas negras en el caso en que las branas llevan cargas de diferentes tipos. En particular, consideramos los casos en que la brana negra está acoplada a un potencial de (p+1)-forma, que llamamos brana con carga fundamental, y brana acoplada a un campo de Maxwell. También hemos investigado las propiedades de estabilidad de estos sistemas hidrodinámicos . Otra línea de investigación es el estudio de la hidrodinámica de fluidos utilizando la reducción dimensional de Kaluza Klein. Empezamos considerando un fluido genérico y luego hemos particularizado el cálculo al fluido dual a una p-brana negra. Hemos investigado como varían los coeficientes de transporte de la teoría inicial como la "shear and bulk viscosity" y además hemos conseguido calcular la matriz de conductividad térmica. Como último proyecto hemos desarrollo mapas entre espaciotiempos diferentes. En particular hemos extendido el "AdS/Ricci-flat correspondence" para espacios de Einstein con curvatura positiva y negativa. Una vez derivado el mapa, lo hemos aplicado a espacios de Sitter (dS) y AdS y a agujeros negros de Schwarzschild-dS/AdS. Además, hemos estudiado perturbaciones en la frontera de AdS, que a través del mapa nos dan sugerencias sobre una posible construcción de holografía en espacio de dS. De hecho, la frontera de un espacio asintóticamente AdS se mapea en una brana en el centro de dS y las perturbaciones cerca de la frontera tienen como fuente un tensor energía-impulso confinado en esta brana.
Kunesch, Markus. « Numerical simulations of instabilities in general relativity ». Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/283135.
Texte intégralSeahra, Sanjeev. « Physics in Higher-Dimensional Manifolds ». Thesis, University of Waterloo, 2003. http://hdl.handle.net/10012/1276.
Texte intégralCarter, Benedict Miles Nicholas. « Higher Dimensional Gravity, Black Holes and Brane Worlds ». Thesis, University of Canterbury. Physics and Astronomy, 2006. http://hdl.handle.net/10092/1273.
Texte intégralGodazgar, Mohammad Mahdi. « Aspects of higher dimensional Einstein theory and M-theory ». Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/245148.
Texte intégralSchlue, Volker. « Linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes ». Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/243640.
Texte intégralNewsome, Ian M. « GEODESIC STRUCTURE IN SCHWARZSCHILD GEOMETRY WITH EXTENSIONS IN HIGHER DIMENSIONAL SPACETIMES ». VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5414.
Texte intégralMizuno, Ryousuke. « Violation of Weak Cosmic Censorship in a Gravitational Dust Collapse ». 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225401.
Texte intégralCREMONA, FRANCESCO. « ON THE LINEAR INSTABILITY OF HIGHER DIMENSIONAL WORMHOLES SUPPORTED BY SELF-INTERACTING PHANTOM SCALAR FIELDS ». Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/820071.
Texte intégralIn this thesis I deal with the linear stability analysis of static, spherically symmetric wormholes supported by phantom self-interacting scalar fields, in the framework of General Relativity with arbitrary spacetime dimension. In the previous literature, a gauge-invariant stability analysis of wormhole configurations often succeeds in decoupling the linearized field equations, yielding a wave-type master equation which, however, is typically singular where the radial coefficient of the metric has a critical point, that is, at the wormhole throat. In order to overcome this problem a regularization method has been proposed in previous works, which transforms the singular wave equation to a regular one; this method is usually referred to as “S-deformation” (and sometimes requires a partly numerical implementation, especially, in the case of scalar fields with nontrivial self-interaction). The first result of my work is the reduction of the linearized field equations to a completely regular, constrained wave system for two suitably defined gauge-invariant functions of the perturbations in the metric coefficients and in the scalar field; the second result is a strategy for decoupling this system, obtaining a single wave-type master equation for another gauge-invariant quantity. No step of this construction causes the appearing of singularities at the wormhole throat or elsewhere (provided that the unperturbed scalar field has no critical points, which occurs in many examples); therefore, it is not necessary to regularize a posteriori the master equation via the S-deformation method. This gauge-invariant and singularity-free formalism, which generalizes to arbitrary spacetime dimensions the approach of my paper [1], is then applied to some known static wormhole solutions (most, but not all of them considered in [1]). The most relevant application is a certain Anti-de Sitter (AdS) wormhole, whose linear stability analysis does not seem to have been performed previously by other authors; by using the present method, it is possible to derive a completely regular master equation describing the perturbations of the AdS wormhole and prove that the latter is actually linearly unstable, after providing a detailed analysis of the spectral properties of the Schrödinger type operator appearing in the master equation. A partial instability result is derived along the same lines for the analogous de Sitter (dS) wormhole, a technically more subtle case due to the presence of horizons. As a further application, I rederive in a singularity-free fashion the master equations for the perturbed Ellis-Bronnikov and Torii-Shinkai wormholes. As a supplement, the linear instability results for the AdS and for the Torii-Shinkai wormholes are also recovered using an alternative, singularity free but gauge-dependent method: in this case a regular master equation is derived for the perturbed radial coordinate, and the gauge-independence of the instability result is tested a posteriori. This alternative, gauge-dependent approach generalizes that introduced in my paper [2] for the reflection symmetric Ellis-Bronnikov wormhole. Let me also cite [3], from which I report some facts about the previously mentioned wormholes in absence of perturbations. BIBLIOGRAPHY: [1] F. Cremona, L. Pizzocchero, and O. Sarbach. Gauge-invariant spherical linear perturbations of wormholes in einstein gravity minimally coupled to a self-interacting phantom scalar field. Physical Review D, 101, 05 2020. [2] F. Cremona, F. Pirotta, and L. Pizzocchero. On the linear instability of the Ellis-Bronnikov-Morris-Thorne wormhole. Gen. Relativ. Gravitat., 51:19, 2019. [3] F. Cremona. Geodesic structure and linear instability of some wormholes. Proceeding for the conference: Domoschool 2019 (submitted).
Sarkar, Souvik. « Consequences of Quantum Mechanics in General Relativity ». University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535709090287102.
Texte intégralHoneycutt, David Carl. « Relativity via a Bergmannian Chronometric in a squared-dimensional hyperspace ». Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/27984.
Texte intégralWatts, David G. « Inertial and electromagnetic aspects of matter induced from five-dimensional general relativity ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0008/NQ38281.pdf.
Texte intégralMetzner, Norman. « Twistor theory of higher-dimensional black holes ». Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:0c275046-2d6f-4860-9bb3-5d5e5048cd5a.
Texte intégralKonstantis, Panagiotis [Verfasser], et Frank [Akademischer Betreuer] Loose. « Three-Dimensional Homogeneous Spaces and their Application in General Relativity / Panagiotis Konstantis ; Betreuer : Frank Loose ». Tübingen : Universitätsbibliothek Tübingen, 2013. http://d-nb.info/1162843977/34.
Texte intégralChen, Tai-jun. « Constrained dynamics and higher derivative systems in modified gravity ». Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/248757.
Texte intégralYu, Hoi-fung, et 余海峰. « Gravitational waves from the phase-transition-induced collapse of neutron stars using 2-dimensional general relativistic code ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46604078.
Texte intégralMoodley, Jothi. « Applications of embedding theory in higher dimensional general relativity ». Thesis, 2012. http://hdl.handle.net/10413/10594.
Texte intégralThesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2012.
Kuchynka, Martin. « Geometrické vlastnosti algebraicky speciálních prostoročasů ». Master's thesis, 2016. http://www.nusl.cz/ntk/nusl-352744.
Texte intégralKolář, Ivan. « Symetrie systémů v prostorech příbuzných prostoročasu vícedimenzionální černé díry ». Master's thesis, 2014. http://www.nusl.cz/ntk/nusl-332244.
Texte intégralHuang, Juin-Yan, et 黃俊燕. « Gravitational Energy of Three and Four Dimensional General Relativity ». Thesis, 1996. http://ndltd.ncl.edu.tw/handle/26187979765765650348.
Texte intégral國立交通大學
電子物理學系
84
In this thesis,we review the energy-momentum pseudotensor method in 3+1 dimensional general relativity,and we also indicate the failure of energy-momentum pseudotensor method in 2+1 dimensional general relativity.We proposedthe energy of 2+1 dimensional general relativity as Euler invariance.The totalenergy can be decomposed into matter part and gravitational part,the gravitational part depends on the extrinsic curvature of spatial two surface.And we also point out the resemblance between 2+1 dimensional general relativity and Aharonov-Bohm effect in Electromagnetism.