Articles de revues sur le sujet « High Frequency Percussive Ventilation »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : High Frequency Percussive Ventilation.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « High Frequency Percussive Ventilation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Salim, Ali, et Matthew Martin. « High-frequency percussive ventilation ». Critical Care Medicine 33, Supplement (mars 2005) : S241—S245. http://dx.doi.org/10.1097/01.ccm.0000155921.32083.ce.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Martin, Matthew J., et Ali Salim. « High-Frequency Percussive Ventilation ». Critical Care Medicine 33, no 9 (septembre 2005) : 2155–56. http://dx.doi.org/10.1097/01.ccm.0000179011.89720.c2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lucangelo, Umberto, Vittorio Antonaglia, Antonino Gullo et Walter A. Zin. « High-Frequency Percussive Ventilation ». Critical Care Medicine 33, no 9 (septembre 2005) : 2155. http://dx.doi.org/10.1097/01.ccm.0000179024.47543.fe.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Boscolo, Annalisa, Arianna Peralta, Fabio Baratto, Sandra Rossi et Carlo Ori. « High-Frequency Percussive Ventilation ». A & ; A Case Reports 4, no 7 (avril 2015) : 79–84. http://dx.doi.org/10.1213/xaa.0000000000000131.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Allan, Patrick F., Erik C. Osborn, Kevin K. Chung et Sandra M. Wanek. « High-Frequency Percussive Ventilation Revisited ». Journal of Burn Care & ; Research 31, no 4 (juillet 2010) : 510–20. http://dx.doi.org/10.1097/bcr.0b013e3181e4d605.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kunugiyama, Sujen K., et Christine S. Schulman. « High-Frequency Percussive Ventilation Using the VDR-4 Ventilator ». AACN Advanced Critical Care 23, no 4 (1 octobre 2012) : 370–80. http://dx.doi.org/10.4037/nci.0b013e31826e9031.

Texte intégral
Résumé :
High-frequency percussive ventilation (HFPV) has been used for patients with severe respiratory compromise refractory to conventional mechanical ventilation. It frequently results in equivalent or improved oxygenation and ventilation at lower peak pressures than conventional ventilation, thus minimizing secondary ventilator-associated lung injury. The only ventilator currently available that delivers HFPV is the volume diffusive respirator (VDR-4; Percussionaire Corp, Sandpoint, Idaho). High-frequency percussive ventilation is delivered via a pneumatically powered, pressure-limited, time-cycled, high-frequency flow interrupter and provides small tidal volumes with 300 to 700 oscillations per minute. Following transition to HFPV, respiratory status often stabilizes or improves within a few hours. The unique gas flow mobilizes significant volumes of pulmonary secretions, further facilitating gas exchange. This article reviews the operating principles of HFPV, the functional components of the VDR-4, and the special nursing care considerations to include sedation, hemodynamic assessment, skin and oral care, nutrition, and weaning from ventilation.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kunugiyama, Sujen K., et Christine S. Schulman. « High-Frequency Percussive Ventilation Using the VDR-4 Ventilator ». AACN Advanced Critical Care 23, no 4 (2012) : 370–80. http://dx.doi.org/10.1097/nci.0b013e31826e9031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gallagher, T. James, Philip G. Boysen, Dwight D. Davidson, James R. Miller et Steven B. Leven. « HIGH FREQUENCY PERCUSSIVE VENTILATION COMPARED WITH CONVENTIONAL MECHANICAL VENTILATION ». Critical Care Medicine 13, no 4 (avril 1985) : 312. http://dx.doi.org/10.1097/00003246-198504000-00075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

GALLAGHER, T. JAMES, PHILIP G. BOYSEN, DWIGHT D. DAVIDSON, JAMES R. MILLER et STEVEN B. LEVEN. « High-frequency percussive ventilation compared with conventional mechanical ventilation ». Critical Care Medicine 17, no 4 (avril 1989) : 364–66. http://dx.doi.org/10.1097/00003246-198904000-00013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Starnes-Roubaud, Margaret, Elizabeth A. Bales, Alex Williams-Resnick, Philip D. Lumb, Joe A. Escudero, Linda S. Chan et Warren L. Garner. « High frequency percussive ventilation and low FiO2 ». Burns 38, no 7 (novembre 2012) : 984–91. http://dx.doi.org/10.1016/j.burns.2012.05.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Benn, Francis, Ashwad Afzal, Berhane Worku, Felix Khusid, Bashar H. Fahoum et Iosif Gulkarov. « Use of High-Frequency Percussive Ventilation to Expand Organ Donor Pool ». Journal of Intensive Care Medicine 33, no 4 (19 mai 2017) : 267–69. http://dx.doi.org/10.1177/0885066617709969.

Texte intégral
Résumé :
A 34-year-old woman was brought in to the emergency department after a motor vehicle accident. She had signs of traumatic head injury with Glasgow Coma Scale score of 3, and her neurological examination was consistent with brain death. She was persistently hypoxic on conventional mechanical ventilation and high-frequency percussive ventilation was initiated. The patient’s oxygenation improved and was sustained long enough to provide time for organ procurement. This is the first case portraying high-frequency percussive ventilation as a bridge for donors failing on conventional mechanical ventilation.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Allan, Patrick, Sahar Abouchahine, Gregory Ruff, Michael Van de Kieft et Jefferson Thurlby. « PULSATILE INSPIRATORY:EXPIRATORY RATIOS AND FREQUENCY AFFECTS VENTILATION DURING HIGH FREQUENCY PERCUSSIVE VENTILATION. » Critical Care Medicine 33 (décembre 2005) : A110. http://dx.doi.org/10.1097/00003246-200512002-00392.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Barillo, MD, FACS, FCCM, COL David J., Evan M. Renz, MD, SFC Gabriel R. Wright, CRT, MAJ Kristine P. Broger, CCRN, LTC Kevin K. Chung, MD, Charles K. Thompson, PA-C et Leopoldo C. Cancio, MD, FACS. « High-frequency percussive ventilation for intercontinental aeromedical evacuation ». American Journal of Disaster Medicine 6, no 6 (1 novembre 2011) : 369–78. http://dx.doi.org/10.5055/ajdm.2011.0075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

KEARS, ALAYNNA, CHRISTOPHER LENIVY, KAITLYN MUSCO, ROSHUN SANGANI et DANIEL SCHWED LUSTGARTEN. « USE OF HIGH FREQUENCY PERCUSSIVE VENTILATION FOR ARDS ». Chest 160, no 4 (octobre 2021) : A951. http://dx.doi.org/10.1016/j.chest.2021.07.886.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Hiller, Kenneth N., et Christopher K. Morgan. « High-frequency Percussive Ventilation for Severe Inhalation Injury ». Anesthesiology 120, no 4 (1 avril 2014) : 998. http://dx.doi.org/10.1097/aln.0b013e31828ce85c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Ray, Kristi L., Robert J. Apsey, Jeff L. Heltborg, Chae L. Bliss et Enoch T. Huang. « Performance characteristics of high-frequency percussive ventilation under hyperbaric conditions ». Undersea and Hyperbaric Medicine 03, no 01 (1 mars 2021) : 157–68. http://dx.doi.org/10.22462/03.04.2021.6.

Texte intégral
Résumé :
Introduction: Safe administration of critical care hyperbaric medicine requires specialized equipment and advanced training. Equipment must be tested in order to evaluate function in the hyperbaric environment. High-frequency percussive ventilation (HFPV) has been used in intensive care settings effectively, but it has never been tested in a hyperbaric chamber. Methods: Following a modified U.S. Navy testing protocol used to evaluate hyperbaric ventilators, we evaluated an HFPV transport ventilator in a multiplace hyperbaric chamber at 1.0, 1.9, and 2.8 atmospheres absolute (ATA). We used a test lung with analytical software for data collection. The ventilator uses simultaneous cyclic pressure-controlled ventilation at a pulsatile flow rate (PFR)/oscillatory continuous positive airway pressure (oCPAP) ratio of 30/10 with a high-frequency oscillation percussive rate of 500 beats per minute. Inspiratory and expiratory times were maintained at two seconds throughout each breathing cycle. Results: During manned studies, the PFR/oCPAP ratios were 26/6, 22/7, and 22.5/8 at an airway resistance of 20cm H2O/L/second and 18/9, 15.2/8.5, and 13.6/7 at an airway resistance of 50 cm/H2O/L/second at 1, 1.9, and 2.8 ATA. The resulting release volumes were 800, 547, and 513 mL at airway resistance of 20 cm H2O/L/sec and 400, 253, and 180 mL at airway resistance of 50 cm/H2O/L/sec at 1, 1.9, and 2.8 ATA. Unmanned testing showed similar changes. The mean airway pressure (MAP) remained stable throughout all test conditions; theoretically, supporting adequate lung recruitment and gas exchange. A case where HFPV was used to treat a patient for CO poisoning was presented to illustrate that HFPV worked well under HBO2 conditions and no complications occurred during HBO2 treatment. Conclusion: The HFPV transport ventilator performed adequately under hyperbaric conditions and should be considered a viable option for hyperbaric critical care. This ventilator has atypical terminology and produces unique pulmonary physiology, thus requiring specialized training prior to use.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Galustanian, Lusanik. « High Frequency Percussive Ventilation, a County Medical Center Experience ». Chest 148, no 4 (octobre 2015) : 304A. http://dx.doi.org/10.1378/chest.2271736.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Hall, Jason J., John L. Hunt, Brett D. Arnoldo et Gary F. Purdue. « Use of High-Frequency Percussive Ventilation in Inhalation Injuries ». Journal of Burn Care & ; Research 28, no 3 (mai 2007) : 396–400. http://dx.doi.org/10.1097/bcr.0b013e318053d2d6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Allan, Patrick F., Cindy A. Codispoti, Shannon G. Womble, Michael L. Overton, Sandra M. Wanek, John H. Sherner, Raymond Fang et Steven V. Silvey. « Inhaled Prostacyclin in Combination With High-Frequency Percussive Ventilation ». Journal of Burn Care & ; Research 31, no 2 (mars 2010) : 347–52. http://dx.doi.org/10.1097/bcr.0b013e3181d0f5a1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

CIOFFI, WILLIAM G., THERESA A. GRAVES, WILLIAM F. McMANUS et BASIL A. PRUITT. « High-frequency Percussive Ventilation in Patients with Inhalation Injury ». Journal of Trauma : Injury, Infection, and Critical Care 29, no 3 (mars 1989) : 350–54. http://dx.doi.org/10.1097/00005373-198903000-00012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Hall, J. J., G. F. Purdue, B. D. Arnoldo et J. L. Hunt. « Use of High Frequency Percussive Ventilation in Inhalation Injuries ». Journal of Burn Care & ; Research 27, Supplement (mars 2006) : S75. http://dx.doi.org/10.1097/01253092-200603001-00054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Sala, Ina M., Girish B. Nair, Beverly Maurer et Thomas M. Guerrero. « High frequency percussive ventilation for respiratory immobilization in radiotherapy ». Technical Innovations & ; Patient Support in Radiation Oncology 9 (mars 2019) : 8–12. http://dx.doi.org/10.1016/j.tipsro.2018.11.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Sala, I. M., B. A. Maurer, N. K. Myziuk, C. W. Stevens et T. M. Guerrero. « High Frequency Percussive Ventilation for Chest Wall Motion Immobilization ». International Journal of Radiation Oncology*Biology*Physics 102, no 3 (novembre 2018) : S206. http://dx.doi.org/10.1016/j.ijrobp.2018.07.113.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Wong, Ivan, Berhane Worku, Jeremy A. Weingarten, Alexander Ivanov, Felix Khusid, Ashwad Afzal, Robert F. Tranbaugh et Iosif Gulkarov. « High-frequency percussive ventilation in cardiac surgery patients failing mechanical conventional ventilation† ». Interactive CardioVascular and Thoracic Surgery 25, no 6 (21 juillet 2017) : 937–41. http://dx.doi.org/10.1093/icvts/ivx237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Platteau, S., L. Foubert, F. Van Praet, G. Cammu, J. Coddens et T. Deloof. « High-frequency percussive ventilation during one-lung ventilation for robotically enhanced MIDCAB ». European Journal of Anaesthesiology 21, Supplement 32 (juin 2004) : 78. http://dx.doi.org/10.1097/00003643-200406002-00283.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Velmahos, George C., Linda S. Chan, Raymond Tatevossian, Edward E. Cornwell, William R. Dougherty, Joe Escudero et Demetrios Demetriades. « High-frequency Percussive Ventilation Improves Oxygenation in Patients With ARDS ». Chest 116, no 2 (août 1999) : 440–46. http://dx.doi.org/10.1378/chest.116.2.440.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Kodali, Lavanya, Emile Klada, Ruchi Bansal, Adebayo Esan, Felix Khusid et Suhail Raoof. « High Frequency Percussive Ventilation in the Management of Acute Asthma ». Chest 140, no 4 (octobre 2011) : 136A. http://dx.doi.org/10.1378/chest.1119768.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Kacmarek, Robert M., et Jesús Villar. « Clinical repercussions of high-frequency percussive ventilation : A burning issue* ». Critical Care Medicine 38, no 10 (octobre 2010) : 2069–70. http://dx.doi.org/10.1097/ccm.0b013e3181f178cb.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Cortiella, Joaquin, Ron Mlcak et David Herndon. « High Frequency Percussive Ventilation in Pediatric Patients With Inhalation Injury ». Journal of Burn Care & ; Rehabilitation 20, no 3 (mai 1999) : 232–35. http://dx.doi.org/10.1097/00004630-199905000-00014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Reper, P., O. Wibaux, P. Van Laeke, D. Vandeenen, L. Duinslaeger et A. Vanderkelen. « High frequency percussive ventilation and conventional ventilation after smoke inhalation : a randomised study ». Burns 28, no 5 (août 2002) : 503–8. http://dx.doi.org/10.1016/s0305-4179(02)00051-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Giacomino, Katia, Roger Hilfiker, Tina Magnin et Lara Allet. « A systematic review on the effects of high frequency chest wall compression and intrapulmonary percussive ventilation in patients with neuromuscular disease ». F1000Research 10 (8 janvier 2021) : 10. http://dx.doi.org/10.12688/f1000research.27833.1.

Texte intégral
Résumé :
Background: Respiratory insufficiency is the most common cause of mortality among patients with a neuromuscular disease. Methods: We explored the effects of high frequency wall compression and intrapulmonary percussive ventilation, compared with standard care or no treatment, on the lung volume and capacity, and quality of life in patients with neuromuscular disease during respiratory infections or in stable periods. We further assessed the effects of these two interventions on clinical value, complications, and survival. The literature search was performed on Embase, MEDLINE, CINAHL, CENTRAL and PEDro. Randomised controlled trials and cross-over studies were eligible. Results: Five studies were included, and results were presented narratively. High frequency wall compression was not shown to be superior to standard care in terms of lung volume and capacity, quality of life, complications, and survival rate. Compared with standard care, intrapulmonary percussive ventilation showed non-significant differences in terms of lung volume and capacity, and the risk of respiratory infection. Standard care was nevertheless associated with a significantly higher risk of days of hospitalisation (Incidence Rate Ratio 8.5 [1.1-67]) and of antibiotic use than intrapulmonary percussive ventilation (Incidence Rate Ratio 43 [6-333]). Conclusions: Due to large variety of reported outcomes, missing data and limited number of studies, no meta-analysis could be conducted. The results should be interpreted with caution as the results have a very low certainty of evidence and reported outcomes have a high risk of bias. The evidence for high frequency wall compression and intrapulmonary percussive ventilation is still insufficient to draw final conclusions. Protocol registration: PROSPERO ID: CRD42017064703.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Giacomino, Katia, Roger Hilfiker, Tina Magnin et Lara Allet. « A systematic review on the effects of high frequency chest wall compression and intrapulmonary percussive ventilation in patients with neuromuscular disease ». F1000Research 10 (8 janvier 2021) : 10. http://dx.doi.org/10.12688/f1000research.27833.1.

Texte intégral
Résumé :
Background: Respiratory insufficiency is the most common cause of mortality among patients with a neuromuscular disease. Methods: We explored the effects of high frequency wall compression and intrapulmonary percussive ventilation, compared with standard care or no treatment, on the lung volume and capacity, and quality of life in patients with neuromuscular disease during respiratory infections or in stable periods. We further assessed the effects of these two interventions on clinical value, complications, and survival. The literature search was performed on Embase, MEDLINE, CINAHL, CENTRAL and PEDro. Randomised controlled trials and cross-over studies were eligible. Results: Five studies were included, and results were presented narratively. High frequency wall compression was not shown to be superior to standard care in terms of lung volume and capacity, quality of life, complications, and survival rate. Compared with standard care, intrapulmonary percussive ventilation showed non-significant differences in terms of lung volume and capacity, and the risk of respiratory infection. Standard care was nevertheless associated with a significantly higher risk of days of hospitalisation (Incidence Rate Ratio 8.5 [1.1-67]) and of antibiotic use than intrapulmonary percussive ventilation (Incidence Rate Ratio 43 [6-333]). Conclusions: Due to large variety of reported outcomes, missing data and limited number of studies, no meta-analysis could be conducted. The results should be interpreted with caution as the results have a very low certainty of evidence and reported outcomes have a high risk of bias. The evidence for high frequency wall compression and intrapulmonary percussive ventilation is still insufficient to draw final conclusions. Protocol registration: PROSPERO ID: CRD42017064703.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Korzhuk, Anatoliy, Ashwad Afzal, Ivan Wong, Felix Khusid, Berhane Worku et Iosif Gulkarov. « High-Frequency Percussive Ventilation Rescue Therapy in Morbidly Obese Patients Failing Conventional Mechanical Ventilation ». Journal of Intensive Care Medicine 35, no 6 (22 avril 2018) : 583–87. http://dx.doi.org/10.1177/0885066618769596.

Texte intégral
Résumé :
Background: Morbidly obese patients with respiratory failure who do not improve on conventional mechanical ventilation (CMV) often undergo rescue therapy with extracorporeal membrane oxygenation (ECMO). We describe our experience with high-frequency percussive ventilation (HFPV) as a rescue modality. Methods: In a retrospective analysis from 2009 to 2016, 12 morbidly obese patients underwent HFPV after failing to wean from CMV. Data were collected regarding demographics, cause of respiratory failure, ventilation settings, and hospital course outcomes. Our end point data were pre- and post-HFPV partial pressure of arterial oxygen and PaO2 to fraction of inspired oxygen (PF) ratios measured at initiation, 2, and 24 hours. Results: Twelve morbidly obese patients required HFPV for respiratory failure. Causes of respiratory failure overlapped and included cardiogenic pulmonary edema (n = 8), pneumonia (n = 5), septic shock (n = 5), and asthma (n = 1). After HFPV initiation, mean fraction of inspired oxygen FiO2 was tapered from 98% to 82% and 66% at 2 and 24 hours, respectively. Mean PaO2 increased from 60.9 mm Hg before HFPV to 175.1 mm Hg ( P < .05) at initiation of HFPV, then sustained at 129.5 mm Hg ( P < .05) and 88.1 mm Hg ( P < .005) at 2 and 24 hours, respectively. Mean PF ratio improved from 66.1 before HFPV to 180.3 ( P < .05), 181.0 ( P < .05) and 148.9 ( P < .0005) at initiation, 2, and 24 hours, respectively. The improvement in mean PaO2 and PF ratios was durable at 24 hours whether or not the patient was returned to CMV (n = 10) or remained on HFPV (n = 2). Survival to discharge was 66.7%. Conclusion: In our cohort of morbidly obese patients, HFPV was successfully utilized as a rescue therapy precluding the need for ECMO. Despite our small sample size, HFPV should be considered as a rescue therapy in morbidly obese patients failing CMV prior to the initiation of ECMO. Our retrospective analysis supports consideration for HFPV as another form of rescue therapy for obese patients with refractory hypoxemia and respiratory failure who are not improving with CMV.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Dries, D. J. « High-frequency percussive ventilation improves perioperatively clinical evolution in pulmonary resection ». Yearbook of Critical Care Medicine 2011 (janvier 2011) : 27–29. http://dx.doi.org/10.1016/s0734-3299(10)79421-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

HURST, JAMES M., RICHARD D. BRANSON et KENNETH DAVIS. « High-frequency Percussive Ventilation in the Management of Elevated Intracranial Pressure ». Journal of Trauma : Injury, Infection, and Critical Care 28, no 9 (septembre 1988) : 1363–67. http://dx.doi.org/10.1097/00005373-198809000-00010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Reper, P., R. Van Bos, K. Van Loey, P. Van Laeke et A. Vanderkelen. « High frequency percussive ventilation in burn patients : hemodynamics and gas exchange ». Burns 29, no 6 (septembre 2003) : 603–8. http://dx.doi.org/10.1016/s0305-4179(03)00068-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Kinthala, Sudhakar, Mark Liang, Felix Khusid et Sebron Harrison. « The Use of High-Frequency Percussive Ventilation for Whole-Lung Lavage ». A & ; A Practice 11, no 8 (octobre 2018) : 205–7. http://dx.doi.org/10.1213/xaa.0000000000000778.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Lucangelo, Umberto, Vittorio Antonaglia, Walter A. Zin, Marco Confalonieri, Massimo Borelli, Mario Columban, Silvio Cassio et al. « High-frequency percussive ventilation improves perioperatively clinical evolution in pulmonary resection* ». Critical Care Medicine 37, no 5 (mai 2009) : 1663–69. http://dx.doi.org/10.1097/ccm.0b013e31819ef9e1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Blanch, Luis, Jesús Villar et J. López Aguilar. « High-frequency percussive ventilation : An old mode with a great future* ». Critical Care Medicine 37, no 5 (mai 2009) : 1810–11. http://dx.doi.org/10.1097/ccm.0b013e3181a0923a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Giacomino, Katia, Roger Hilfiker, Tina Magnin et Lara Allet. « A systematic review on the effects of high frequency chest wall compression and intrapulmonary percussive ventilation in patients with neuromuscular disease ». F1000Research 10 (21 juin 2022) : 10. http://dx.doi.org/10.12688/f1000research.27833.2.

Texte intégral
Résumé :
Background: Respiratory insufficiency is the most common cause of mortality among patients with a neuromuscular disease. Methods: We followed the PRISMA statement for systematic reviews. We explored the effects of high frequency wall compression and intrapulmonary percussive ventilation, compared to a control intervention, on the lung volume and capacity, and quality of life in patients with neuromuscular disease. We further assessed the effects of these two interventions on clinical value, complications, and survival. The literature search was performed on 30/06/2020 in Embase, MEDLINE, CENTRAL, PEDro and CINAHL on 6/07/2020. Inclusion criteria: patients with neuromuscular disease; interventions of interest mentioned above; randomised controlled trials comparing these interventions with a control intervention. Results: Five studies were included, and results were presented narratively. High frequency wall compression was not shown to be superior to standard care in terms of lung volume and capacity, quality of life, complications, and survival rate. Compared with standard care, intrapulmonary percussive ventilation showed non-significant differences in terms of lung volume and capacity, and the risk of respiratory infection. Standard care was nevertheless associated with a significantly higher risk of days of hospitalisation (Incidence Rate Ratio 8.5 [1.1-67]) and of antibiotic use than intrapulmonary percussive ventilation (Incidence Rate Ratio 43 [6-333]). The assessment with the risk of bias tool 2.0 showed a high risk of bias for all outcomes. Moreover, the evidence is of very low-quality for all outcomes. Conclusions: Due to large variety of reported outcomes, missing data and limited number of studies, no meta-analysis could be conducted. The results should be interpreted with caution as the results have a very low certainty of evidence and reported outcomes have a high risk of bias. The evidence for high frequency wall compression and intrapulmonary percussive ventilation is still insufficient to draw final conclusions. Registration: PROSPERO ID: CRD42017064703.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Renesme, L., C. Elleau, P. Nolent, M. Fayon et E. Dumas De La Roque. « Comparative study of high frequency percussive ventilation, high frequency ventilation by oscillation and conventional ventilation in a piglet model of meconium aspiration ». Paediatric Respiratory Reviews 12 (juin 2011) : S63. http://dx.doi.org/10.1016/s1526-0542(11)70052-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Miller, Andrew C., Paula A. Ferrada, Sameer S. Kadri, Krupa Nataraj-Bhandari, Amir Vahedian-Azimi et Sadeq A. Quraishi. « High-Frequency Ventilation Modalities as Salvage Therapy for Smoke Inhalation–Associated Acute Lung Injury : A Systematic Review ». Journal of Intensive Care Medicine 33, no 6 (26 juin 2017) : 335–45. http://dx.doi.org/10.1177/0885066617714770.

Texte intégral
Résumé :
Background: Smoke inhalation–associated acute lung injury (SI-ALI) is a major cause of morbidity and mortality in victims of fire tragedies. To date, there are no evidence-based guidelines on ventilation strategies in acute respiratory distress syndrome (ARDS) after smoke inhalation. We reviewed the existing literature for clinical studies of salvage mechanical ventilation (MV) strategies in patients with SI-ALI, focusing on mortality and pneumonia as outcomes. Methods: A systematic search was designed in accordance with preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Risk of bias assessment was performed using the Newcastle-Ottawa Quality Assessment Scale (NOS; 0 to 9 stars), with a score ≥7 being the threshold for inclusion in the meta-analysis. A systematic search strategy was used to search 10 databases. Clinical studies were included in which patients: (1) experienced smoke inhalation, (2) treated with MV, and (3) described a concurrent or historical control group. Results: A total of 226 potentially relevant studies were identified, of which 7 studies on high-frequency percussive ventilation (HFPV) met inclusion criteria. No studies met inclusion for meta-analysis (NOS ≥ 7). In studies comparing HFPV to conventional mechanical ventilation (CMV), mortality and pneumonia incidence improved in 3 studies and remained unchanged in 3 others. No change in ventilator days or ICU length of stay was observed; however, oxygenation and work of breathing improved with HFPV. Conclusions: Mechanical ventilation in patients with SI-ALI has not been well studied. High-frequency percussive ventilation may decrease in-hospital mortality and pneumonia incidence when compared to CMV. The absence of “good” quality evidence precluded meta-analysis. Based upon low-quality evidence, there was a very weak recommendation that HFPV use may be associated with lower mortality and pneumonia rates in patients with SI-ALI. Given SI-ALI’s unique underlying pathophysiology, and its potential implications on therapy, randomized controlled studies are required to ensure that patients receive the safest and most effective care. Trial Registration: The study was registered with PROSPERO International prospective register of systematic reviews (#47015).
Styles APA, Harvard, Vancouver, ISO, etc.
43

Byerly, Faera L., Bruce A. Cairns, Kathy A. Short, John A. Haithcock, Lynn Shapiro, Alvis Page et Philip Boysen. « HIGH FREQUENCY PERCUSSIVE VENTILATION CAN MIMIC AIRWAY PRESSURE RELEASE VENTILATION IN A TEST LUNG MODEL ». Critical Care Medicine 32, Supplement (décembre 2004) : A38. http://dx.doi.org/10.1097/00003246-200412001-00144.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Mozingo, D. W. « High-frequency percussive ventilation and low tidal volume ventilation in burns : A randomized controlled trial ». Yearbook of Surgery 2011 (janvier 2011) : 56–58. http://dx.doi.org/10.1016/j.ysur.2011.04.127.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Chung, Kevin K., Steven E. Wolf, Evan M. Renz, Patrick F. Allan, James K. Aden, Gerald A. Merrill, Mehdi C. Shelhamer et al. « High-frequency percussive ventilation and low tidal volume ventilation in burns : A randomized controlled trial* ». Critical Care Medicine 38, no 10 (octobre 2010) : 1970–77. http://dx.doi.org/10.1097/ccm.0b013e3181eb9d0b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Rizkalla, Nicole A., Cheryl L. Dominick, Julie C. Fitzgerald, Neal J. Thomas et Nadir Yehya. « High-frequency percussive ventilation improves oxygenation and ventilation in pediatric patients with acute respiratory failure ». Journal of Critical Care 29, no 2 (avril 2014) : 314.e1–314.e7. http://dx.doi.org/10.1016/j.jcrc.2013.11.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

CIOFFI, WILLIAM G., LORING W. RUE, THERESA A. GRAVES, WILLIAM F. McMANUS, ARTHUR D. MASON et BASIL A. PRUITT. « Prophylactic Use of High-frequency Percussive Ventilation in Patients with Inhalation Injury ». Annals of Surgery 213, no 6 (juin 1991) : 575–82. http://dx.doi.org/10.1097/00000658-199106000-00007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Yehya, Nadir, Cheryl L. Dominick, James T. Connelly, Daniela H. Davis, Peter C. Minneci, Katherine J. Deans, John J. McCloskey et Todd J. Kilbaugh. « High-Frequency Percussive Ventilation and Bronchoscopy During Extracorporeal Life Support in Children ». ASAIO Journal 60, no 4 (2014) : 424–28. http://dx.doi.org/10.1097/mat.0000000000000088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Feltracco, P., E. Serra, S. Barbieri, M. Milevoj, E. Michieletto, C. Carollo, F. Rea, G. Zanus, R. Boetto et C. Ori. « Noninvasive High-Frequency Percussive Ventilation in the Prone Position after Lung Transplantation ». Transplantation Proceedings 44, no 7 (septembre 2012) : 2016–21. http://dx.doi.org/10.1016/j.transproceed.2012.05.062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Hurst, James M., Richard D. Branson, C. Bryan DeHaven, Kenneth Davis et Karen S. Adams. « COMPARISON OF INTERMITTENT MANDATORY VENTILATION(IMV) AND HIGH-FREQUENCY PERCUSSIVE VENTILATION(HFPV) IN ACUTE RESPIRATORY FAILURE ». Critical Care Medicine 14, no 4 (avril 1986) : 354. http://dx.doi.org/10.1097/00003246-198604000-00089.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie