Littérature scientifique sur le sujet « High-Energy Particle »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « High-Energy Particle ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "High-Energy Particle"
Grib, A. A., et Yu V. Pavlov. « Black holes and high energy physics ». International Journal of Modern Physics A 31, no 02n03 (20 janvier 2016) : 1641016. http://dx.doi.org/10.1142/s0217751x16410165.
Texte intégralFranceschini, Roberto. « Energy peaks : A high energy physics outlook ». Modern Physics Letters A 32, no 38 (14 décembre 2017) : 1730034. http://dx.doi.org/10.1142/s0217732317300348.
Texte intégralAgarwal, Pulkit, Han Wei Ang, Zongjin Ong, Aik Hui Chan et Choo Hiap Oh. « On Multiparticle Production in Very High Energy Scattering ». EPJ Web of Conferences 240 (2020) : 07001. http://dx.doi.org/10.1051/epjconf/202024007001.
Texte intégralAdo, Yu M. « High-energy charged-particle accelerators ». Uspekhi Fizicheskih Nauk 145, no 1 (1985) : 87–112. http://dx.doi.org/10.3367/ufnr.0145.198501c.0087.
Texte intégralNAGATA, K., T. KOHNO, H. MURAKAMI, A. NAKAMOTO, N. HASEBE, T. TAKENAKA, J. KIKUCHI et T. DOKE. « OHZORA high energy particle observations. » Journal of geomagnetism and geoelectricity 37, no 3 (1985) : 329–45. http://dx.doi.org/10.5636/jgg.37.329.
Texte intégralAdo, Yu M. « High-energy charged-particle accelerators ». Soviet Physics Uspekhi 28, no 1 (31 janvier 1985) : 54–69. http://dx.doi.org/10.1070/pu1985v028n01abeh003649.
Texte intégralKislyakov, A. I., A. V. Khudoleev, S. S. Kozlovskij et M. P. Petrov. « High energy neutral particle analyzer ». Fusion Engineering and Design 34-35 (mars 1997) : 107–13. http://dx.doi.org/10.1016/s0920-3796(96)00668-0.
Texte intégralHan, J., R. L. Smith et R. Lander. « Microfabricated high-energy particle detector ». Sensors and Actuators A : Physical 54, no 1-3 (juin 1996) : 594–600. http://dx.doi.org/10.1016/s0924-4247(97)80021-0.
Texte intégralSalmeron, R. A. « High Energy & ; Particle Physics ». Europhysics News 18, no 1 (1987) : 1. http://dx.doi.org/10.1051/epn/19871801001.
Texte intégralProtheroe, R. J., et R. W. Clay. « Ultra High Energy Cosmic Rays ». Publications of the Astronomical Society of Australia 21, no 1 (2004) : 1–22. http://dx.doi.org/10.1071/as03047.
Texte intégralThèses sur le sujet "High-Energy Particle"
Grönqvist, Hanna. « Fluctuations in High-Energy Particle Collisions ». Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS155/document.
Texte intégralWe study fluctuations that are omnipresent in high-energy particle collisions. These fluctuations can be either of either classical or quantum origin and we will study both. Firstly, we consider the type of quantum fluctuations that arise in proton-proton collisions. These are computable perturbatively in quantum field theory and we will focus on a specific class of diagrams in this set-up. Secondly, we will consider the fluctuations that are present in collisions between nuclei that can be heavier than protons. These are the quantum laws of nature that describe the positions of nucleons within a nucleus, but also the hydrodynamic fluctuations of classical, thermal origin that affect the evolution of the medium produced in heavy-ion collisions. The fluctuations arising in proton-proton collisions can be computed analytically up to a certain order in perturbative quantum field theory. We will focus on one-loop diagrams of a fixed topology. Loop diagrams give rise to integrals that typically are hard to evaluate. We show how modern mathematical methods can be used to ease their computation. We will study the relations among unitarity cuts of a diagram, the discontinuity across the corresponding branch cut and the coproduct. We show how the original integral corresponding to a given diagram can be reconstructed from the information contained in the coproduct. We expect that these methods can be applied to solve more complicated topologies and help in the computation of new amplitudes in the future. Finally, we study the two types of fluctuations arising in heavy-ion collisions. These are related either to the initial state or the intermediate state of matter produced in such collisions. The initial state fluctuations are experimentally observed to give rise to non-Gaussianities in the final-state spectra. We show how these non-Gaussianities can be explained by the random position and interaction energy of `sources' in the colliding nuclei. Furthermore, we investigate the effect of hydrodynamical noise in the evolution of the medium produced just after a collision. This medium behaves like a fluid with a very low viscosity, and so the corresponding evolution is hydrodynamical
Wilkason, Thomas Frederick Jr. « Exclusive cone jet algorithms for high energy particle colliders ». Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100326.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 59-62).
In this thesis, I develop an exclusive cone jet algorithm based on the principles of jet substructure and demonstrate its use for physics analyses at the Large Hadron Collider. Based on the event shape N-jettiness, this algorithm, called "XCone," partitions the event into a fixed number of conical jets of size RO in the rapidity-azimuth plane. This algorithm is designed to locate substructure independent of momentum, allowing accurate resolution of jets at both low and high energy scales. I present three potential analyses using XCone to search for heavy resonances, Higgs bosons, and top quarks at various momenta and show that it reconstructs these particles with efficiencies between 60% and 80% without any additional substructure techniques, and maintains this efficiency over a wide kinematic range. This algorithm provides many key advantages over traditional jet algorithms that make it appealing for use at the LHC and other high energy particle colliders.
by Thomas Frederick Wilkason, Jr.
S.B.
Blanco-Pillado, José Juan. « Topological defects and ultra-high energy cosmic rays / ». Thesis, Connect to Dissertations & ; Theses @ Tufts University, 2001.
Trouver le texte intégralAdviser: Alexander Vilenkin. Submitted to the Dept. of Physics. Includes bibliographical references (leaves 108-114). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Papaefstathiou, Andreas. « Phenomenological aspects of new physics at high energy hadron colliders ». Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/239399.
Texte intégralWebb, S. « Unusual effects in particle diffraction ». Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234226.
Texte intégralAllport, P. P. « High energy neutrino scattering at low Q'2 ». Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376865.
Texte intégralSritragool, Kunlapaporn. « Modification of Rubber Particle filled Thermoplastic with High Energy Electrons ». Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201000954.
Texte intégralCARNITI, PAOLO. « Electronic Instrumentations for High Energy Particle Physics and Neutrino Physics ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2018. http://hdl.handle.net/10281/198964.
Texte intégralThe present dissertation describes design, qualification and operation of several electronic instrumentations for High Energy Particle Physics experiments (LHCb) and Neutrino Physics experiments (CUORE and CUPID). Starting from 2019, the LHCb experiment at the LHC accelerator will be upgraded to operate at higher luminosity and several of its detectors will be redesigned. The RICH detector will require a completely new optoelectronic readout system. The development of such system has already reached an advanced phase, and several tests at particle beam facilities allowed to qualify the performance of the entire system. In order to achieve a higher stability and a better power supply regulation for the front-end chip, a rad-hard low dropout linear regulator, named ALDO, has been developed. Design strategies, performance tests and results from the irradiation campaign are presented. In the Neutrino Physics field, large-scale bolometric detectors, like those adopted by CUORE and its future upgrade CUPID, offer unique opportunities for the study of neutrinoless double beta decay. Their operation requires particular strategies in the readout instrumentation, which is described here in its entirety. The qualification and optimization of the working parameters as well as the integration of the system in the experimental area are also thoroughly discussed, together with the latest upgrades of two electronic subsystems for the future CUPID experiment.
Patrick, Richard J. II. « The search for supersymmetry in particle physics ». Thesis, California State University, Long Beach, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1527406.
Texte intégralExperimental high energy physics (HEP) techniques are applied to accurate simulated collider data in search for existence or exclusion of supersymmetric (SUSY) particles. Supersymmetry is a leading candidate to resolve the hierarchy problem in particle physics as well as offer a stable dark matter candidate. Techniques and practices are explored and applied to the leptonic decay process production followed by and where is the proton, is the chargino, , are neutralinos and , are the standard model W and Higgs Bosons respectively. Signal yields are in general agreement with other researchers and ranged from 0.5 to 62.6 events. Reduction in the background to signal ratio is demonstrated through isolating the SUSY process and applying theoretical knowledge of the signal and associated dominant backgrounds. Results from this study establish procedures for future work with actual data, offer a benchmark for this specific leptonic decay process and may motivate variable selection and cut criteria choices in future analysis of similar signal processes.
Feige, Ilya Eric Alexander. « Factorization and Precision Calculations in Particle Physics ». Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467340.
Texte intégralPhysics
Livres sur le sujet "High-Energy Particle"
Barone, Vincenzo, et Enrico Predazzi. High-Energy Particle Diffraction. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04724-8.
Texte intégralBarone, Vincenzo. High-Energy Particle Diffraction. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002.
Trouver le texte intégralFaccioli, Pietro, et Carlos Lourenço. Particle Polarization in High Energy Physics. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-08876-6.
Texte intégral1954-, Foster B., et Institute of Physics (Great Britain). High Energy Particle Physics Group, dir. Topics in high energy particle physics. Bristol : Institute of Physics, 1988.
Trouver le texte intégralMelvin, Month, Dahl Per F. 1932-, Dienes Margaret et Symposium on the State of High Energy Physics (1983 : Brookhaven National Laboratory and State University of New York at Stony Brook), dir. The state of high energy physics. New York : American Institute of Physics, 1985.
Trouver le texte intégralEdwards, D. A. An introduction to the physics of high energy accelerators. New York : Wiley, 1993.
Trouver le texte intégral1968-, Qin Hong, dir. Physics of intense charged particle beams in high energy accelerators. London : Imperial College Press, 2001.
Trouver le texte intégralA, Kheifets Semyon, dir. Impedances and wakes in high-energy particle accelerators. Singapore : World Scientific, 1998.
Trouver le texte intégralChao, Alex. Physics of collective beam instabilities in high energy accelerators. New York : Wiley, 1993.
Trouver le texte intégralF, De Laney Thomas, et Kooy Hanne M, dir. Proton and charged particle radiotherapy. Philadelphia : Wolters Kluwer Health/Lippincott Williams & Wilkins, 2008.
Trouver le texte intégralChapitres de livres sur le sujet "High-Energy Particle"
Courvoisier, Thierry J. L. « Particle Acceleration ». Dans High Energy Astrophysics, 111–23. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30970-0_9.
Texte intégralHanagaki, Kazunori, Junichi Tanaka, Makoto Tomoto et Yuji Yamazaki. « Particle Identification ». Dans Experimental Techniques in Modern High-Energy Physics, 69–114. Tokyo : Springer Japan, 2022. http://dx.doi.org/10.1007/978-4-431-56931-2_6.
Texte intégralDi Mitri, Simone. « High Energy Accelerators ». Dans Fundamentals of Particle Accelerator Physics, 55–117. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07662-6_4.
Texte intégralSonderegger, Peter. « Physics with High Energy Ion Beams ». Dans Particle Physics, 79–95. Boston, MA : Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5790-2_4.
Texte intégralBarone, Vincenzo, et Enrico Predazzi. « Introduction ». Dans High-Energy Particle Diffraction, 1–10. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04724-8_1.
Texte intégralBarone, Vincenzo, et Enrico Predazzi. « Phenomenology of Hard Diffraction ». Dans High-Energy Particle Diffraction, 283–319. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04724-8_10.
Texte intégralBarone, Vincenzo, et Enrico Predazzi. « Hard Diffraction in QCD ». Dans High-Energy Particle Diffraction, 321–79. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04724-8_11.
Texte intégralBarone, Vincenzo, et Enrico Predazzi. « Preliminaries ». Dans High-Energy Particle Diffraction, 11–33. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04724-8_2.
Texte intégralBarone, Vincenzo, et Enrico Predazzi. « Kinematics ». Dans High-Energy Particle Diffraction, 35–50. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04724-8_3.
Texte intégralBarone, Vincenzo, et Enrico Predazzi. « The Relativistic S-Matrix ». Dans High-Energy Particle Diffraction, 51–81. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04724-8_4.
Texte intégralActes de conférences sur le sujet "High-Energy Particle"
Lenters, Geoffrey, et James A. Miller. « Charged particle diffusive transport ». Dans High energy solar physics. AIP, 1996. http://dx.doi.org/10.1063/1.50986.
Texte intégralGress, J., Y. Lu, A. Anagnostopoulos, J. Kochocki, J. Olson, J. Poirier, S. Mikocki et A. Trzupek. « Grand particle identification ». Dans High Energy Gamma−Ray Astronomy. AIP, 1991. http://dx.doi.org/10.1063/1.40302.
Texte intégralGaisser, T. K. « Origin of high energy galactic cosmic rays ». Dans Particle astrophysics. AIP, 1990. http://dx.doi.org/10.1063/1.39149.
Texte intégralCarr, John. « Particle astrophysics ». Dans International Europhysics Conference on High Energy Physics. Trieste, Italy : Sissa Medialab, 2001. http://dx.doi.org/10.22323/1.007.0300.
Texte intégralBohlen, Heinz. « Klystron Life Results in Particle Accelerator Applications ». Dans HIGH ENERGY DENSITY AND HIGH POWER RF:5TH Workshop on High Energy Density and High Power RF. AIP, 2002. http://dx.doi.org/10.1063/1.1498179.
Texte intégralDutta, S. Iyer. « High Energy Tau Neutrinos ». Dans COSMOLOGY AND ELEMENTARY PARTICLE PHYSICS : Coral Gables Conference on Cosmology and Elementary Particle Physics. AIP, 2002. http://dx.doi.org/10.1063/1.1492176.
Texte intégralKahler, S. W. « Coronal mass ejections and solar energetic particle events ». Dans High energy solar physics. AIP, 1996. http://dx.doi.org/10.1063/1.50989.
Texte intégralQuigg, Chris. « Perspectives in high-energy physics ». Dans Instrumentation in elementary particle physics. AIP, 2000. http://dx.doi.org/10.1063/1.1361761.
Texte intégralFichtel, Carl E. « High energy gamma ray observations ». Dans Particle acceleration in cosmic plasmas. AIP, 1992. http://dx.doi.org/10.1063/1.42757.
Texte intégralZepeda, A. « Ultra High Energy Cosmic Rays ». Dans INSTRUMENTATION IN ELEMENTARY PARTICLE PHYSICS. AIP, 2003. http://dx.doi.org/10.1063/1.1604079.
Texte intégralRapports d'organisations sur le sujet "High-Energy Particle"
Albert, Andrea. High-energy Particle Physics -- In Space ! Office of Scientific and Technical Information (OSTI), septembre 2018. http://dx.doi.org/10.2172/1469489.
Texte intégralNitz, David F., et Brian E. Fick. Studies of High Energy Particle Astrophysics. Office of Scientific and Technical Information (OSTI), juillet 2014. http://dx.doi.org/10.2172/1145912.
Texte intégralKeung, Wai Yee. Studies In Theoretical High Energy Particle Physics. Office of Scientific and Technical Information (OSTI), juillet 2017. http://dx.doi.org/10.2172/1369642.
Texte intégralAratyn, H., L. Brekke, Wai-Yee, Panigrahi, P. Keung et U. Sukhatme. Studies in theoretical high energy particle physics. Office of Scientific and Technical Information (OSTI), novembre 1990. http://dx.doi.org/10.2172/6312025.
Texte intégralBarker, A. R., J. P. Cumalat, S. P. de Alwis, T. A. DeGrand, W. T. Ford, K. T. Mahanthappa, U. Nauenberg, P. Rankin et J. G. Smith. Elementary particle physics and high energy phenomena. Office of Scientific and Technical Information (OSTI), juin 1992. http://dx.doi.org/10.2172/7278109.
Texte intégralHeinz, M. Improving High-Energy Particle Detectorswith Machine Learning. Office of Scientific and Technical Information (OSTI), septembre 2020. http://dx.doi.org/10.2172/1670544.
Texte intégralAratyn, H., L. Brekke, Wai-Yee Keung et U. Sukhatme. Studies in theoretical high energy particle physics. Office of Scientific and Technical Information (OSTI), janvier 1992. http://dx.doi.org/10.2172/5813351.
Texte intégralVa'Vra, J. Particle identification methods in High Energy Physics. Office of Scientific and Technical Information (OSTI), janvier 2000. http://dx.doi.org/10.2172/753277.
Texte intégralAntaramian, Aram. Broken flavor symmetries in high energy particle phenomenology. Office of Scientific and Technical Information (OSTI), février 1995. http://dx.doi.org/10.2172/69424.
Texte intégralWhite, R. B., et Y. Wu. Numerical evaluation of high energy particle effects in magnetohydrodynamics. Office of Scientific and Technical Information (OSTI), mars 1994. http://dx.doi.org/10.2172/142541.
Texte intégral