Articles de revues sur le sujet « High-energy nuclear collisions »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : High-energy nuclear collisions.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « High-energy nuclear collisions ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Andronov, Evgeny, Magdalena Kuich et Marek Gazdzicki. « Diagram of High-Energy Nuclear Collisions ». Universe 9, no 2 (18 février 2023) : 106. http://dx.doi.org/10.3390/universe9020106.

Texte intégral
Résumé :
Many new particles, mostly hadrons, are produced in high-energy collisions between atomic nuclei. The most popular models describing the hadron-production process are based on the creation, evolution and decay of resonances, strings or quark–gluon plasma. The validity of these models is under vivid discussion, and it seems that a common framework for this discussion is missing. Here, for the first time, we explicitly introduce the diagram of high-energy nuclear collisions, where domains of the dominance of different hadron-production processes in the space of laboratory-controlled parameters, the collision energy and nuclear-mass number of colliding nuclei are indicated. We argue that the recent experimental results suggest the location of boundaries between the domains, allowing for the first time to sketch an example diagram. Finally, we discuss the immediate implications for experimental measurements and model development following the proposed sketch of the diagram.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Liu, F. H. « Transverse-energy distribution in proton–nucleus collisions at high energy ». Canadian Journal of Physics 79, no 4 (1 avril 2001) : 739–48. http://dx.doi.org/10.1139/p01-039.

Texte intégral
Résumé :
Based on the model of nuclear-collision geometry, the independent N–N collision picture and participant contribution picture are used to describe the transverse-energy distribution in p–A collisions at high energy. In the independent N–N collision picture, the energy loss of leading proton in each p–N collision is considered. The calculated results are in agreement with the experimental data of p–Al, p–Cu, and p–U collisions at 200 GeV/c. PACS Nos.: 13.85-t, 13.85Hd, 25.75-q
Styles APA, Harvard, Vancouver, ISO, etc.
3

Müller, Berndt. « Parton Cascades in High-Energy Nuclear Collisions ». International Journal of Modern Physics E 12, no 02 (avril 2003) : 165–76. http://dx.doi.org/10.1142/s0218301303001247.

Texte intégral
Résumé :
This is a review of the parton cascade model (PCM) which provides a QCD-based description of nucleus-nucleus reactions at very high energy. The PCM describes the collision dynamics within the early and dense phase of the reaction in terms of the relativistic, probabilistic transport of perturbative excitations (partons) of the QCD vacuum, combined with the renormalization group flow of the parton virtuality. The current state of numerical implementations of the model, as well as its predictions for nuclear collisions at RHIC and LHC are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Klein, Spencer R., et Peter Steinberg. « Photonuclear and Two-Photon Interactions at High-Energy Nuclear Colliders ». Annual Review of Nuclear and Particle Science 70, no 1 (19 octobre 2020) : 323–54. http://dx.doi.org/10.1146/annurev-nucl-030320-033923.

Texte intégral
Résumé :
Ultraperipheral collisions (UPCs) of heavy ions and protons are the energy frontier for electromagnetic interactions. Both photonuclear and two-photon collisions are studied at collision energies that are far higher than those available elsewhere. In this review, we discuss physics topics that can be addressed with UPCs, including nuclear shadowing, nuclear structure, and searches for physics beyond the Standard Model.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Nara, Yasushi. « JAM : an event generator for high energy nuclear collisions ». EPJ Web of Conferences 208 (2019) : 11004. http://dx.doi.org/10.1051/epjconf/201920811004.

Texte intégral
Résumé :
We review recent developments of an event generator JAM microscopic transport model to simulate high energy nuclear collisions, especially at high baryon density regions. Recent developments focus on the collective effects: implementation of nuclear potentials, equation of state (EoS) modified collision term, and dynamical integration of fluid dynamics. With these extensions, we can discuss the EoS dependence of the transverse collective flows.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Liu, Yunpeng, Kai Zhou et Pengfei Zhuang. « Quarkonia in high energy nuclear collisions ». International Journal of Modern Physics E 24, no 11 (novembre 2015) : 1530015. http://dx.doi.org/10.1142/s0218301315300155.

Texte intégral
Résumé :
We first review the cold and hot nuclear matter effects on quarkonium production in high energy collisions, then discuss three kinds of models to describe the quarkonium suppression and regeneration: the sequential dissociation, the statistical production and the transport approach, and finally make comparisons between the models and the experimental data from heavy ion collisions at SPS, RHIC and LHC energies.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Karol, Paul J. « Transparency in high-energy nuclear collisions ». Physical Review C 46, no 5 (1 novembre 1992) : 1988–95. http://dx.doi.org/10.1103/physrevc.46.1988.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

He, Hang, Yunpeng Liu et Pengfei Zhuang. « Ωcccproduction in high energy nuclear collisions ». Physics Letters B 746 (juin 2015) : 59–63. http://dx.doi.org/10.1016/j.physletb.2015.04.049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Fries, R. J. « High energy nuclear collisions : Theory overview ». Pramana 75, no 2 (août 2010) : 235–45. http://dx.doi.org/10.1007/s12043-010-0112-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Fabjan, Christian W. « Detectors for high energy nuclear collisions ». Nuclear Physics A 461, no 1-2 (janvier 1987) : 371–74. http://dx.doi.org/10.1016/0375-9474(87)90498-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Qiu, Jian-Wei. « Universal nuclear dependence in high energy nuclear collisions ». Nuclear Physics A 782, no 1-4 (février 2007) : 234–41. http://dx.doi.org/10.1016/j.nuclphysa.2006.10.025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

WONG, C. Y. « NUCLEAR STOPPING POWER IN NUCLEON-NUCLEUS AND NUCLEUS-NUCLEUS COLLISIONS ». Modern Physics Letters A 04, no 20 (10 octobre 1989) : 1965–73. http://dx.doi.org/10.1142/s0217732389002227.

Texte intégral
Résumé :
The nuclear stopping power, as revealed by nucleon-nucleus and nucleus-nucleus collisions, indicates that the incident nuclear matter loses a substantial fraction of its energy in the collision process. As this energy lost by the nuclear matter is converted into the energy of the hadron matter produced in the center-of-mass region, the nuclear stopping process in high-energy heavy-ion collisions appears to be an excellent tool to produce regions of very high energy density, with a possibility of leading to the formation of a quark-gluon plasma.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Kopeliovich, B. Z., J. Nemchik, I. K. Potashnikova et Iván Schmidt. « Energy conservation in high-pT nuclear reactions ». International Journal of Modern Physics E 23, no 04 (avril 2014) : 1430006. http://dx.doi.org/10.1142/s0218301314300069.

Texte intégral
Résumé :
The Cronin effect, which is nuclear enhancement of high-pT hadron production in pA collisions was successfully predicted prior the measurements at RHIC and LHC. The restrictions imposed by energy conservation lead to spectacular effects. Energy deficit becomes an issue for hadron production in pA collisions at large xL and/or large xT toward the kinematic bounds xL, T = 1. It leads to a suppression, which has been indeed observed for hadrons produced at forward rapidities and large pT. Intensive energy dissipation via gluon radiation by a highly virtual parton produced with large pT, makes this process impossible to continue long. Color neutralization and creation of a colorless dipole must occur promptly. When this happens inside a hot medium created in AA collisions, attenuation of dipoles, rather than induced energy loss, becomes a dominant mechanism for suppression of high-pT hadrons.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Lim, Kian Hwee, Aik Hui Chan et Choo Hiap Oh. « Transverse Energy Density in High Energy Heavy Ion Collisions ». EPJ Web of Conferences 240 (2020) : 07006. http://dx.doi.org/10.1051/epjconf/202024007006.

Texte intégral
Résumé :
A phenomenological model describing the transverse energy distribution (ET) of nuclear collisions is first studied in detail by fitting it on ET data for O-Pb collisions at √sNN = 200 GeV per nucleon obtained from the NA35 collaboration. Next, the model is used to fit the ET data for Pb-Pb collisions at LHC energies of √sNN = 2.76 TeV per nucleon obtained from the ATLAS collaboration. From the fits, we determine an upper bound for the energy density for Pb-Pb collisions at LHC energies of √sNN = 2.76 TeV per nucleon.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Miller, Michael L., Klaus Reygers, Stephen J. Sanders et Peter Steinberg. « Glauber Modeling in High-Energy Nuclear Collisions ». Annual Review of Nuclear and Particle Science 57, no 1 (novembre 2007) : 205–43. http://dx.doi.org/10.1146/annurev.nucl.57.090506.123020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Xu, Nu. « Partonic collectivity in high-energy nuclear collisions ». Journal of Physics : Conference Series 50 (1 novembre 2006) : 243–50. http://dx.doi.org/10.1088/1742-6596/50/1/029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Polleri, Alberto. « Charmonium production in high-energy nuclear collisions ». European Physical Journal A 19, S1 (février 2004) : 139–42. http://dx.doi.org/10.1140/epjad/s2004-03-022-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Sano, Mitsuo, et Masamichi Wakai. « Hypernuclear Production in High-Energy Nuclear Collisions ». Progress of Theoretical Physics Supplement 117 (1994) : 99–121. http://dx.doi.org/10.1143/ptps.117.99.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Zhang, Ben-Wei, Guo-Yang Ma, Wei Dai, Sa Wang et Shan-Liang Zhang. « Jet tomography in high-energy nuclear collisions ». EPJ Web of Conferences 206 (2019) : 04004. http://dx.doi.org/10.1051/epjconf/201920604004.

Texte intégral
Résumé :
When an energetic parton traversing the QCD medium, it may suffer multiple scatterings and lose energy. This jet quenching phenomenon may lead to the suppression of leading hadron productions as well as medium modifications of full jet observables in heavy-ion collisions. In this talk we discuss the nuclear modificationfactors and yield ratios of identified meson such as η, ρ0, φ, ω, and $ K_{\rm{S}}^0 $ as well as π meson at large pT in A+A collisions at the next to-leading order (NLO) with high-twist approach of parton energy loss. Then we discuss a newly developed formalism of combing NLO matrix elements and parton shower (PS) for initial hard production with parton energy loss in the QGP, and its application in investigating massivegauge boson(Z0/W±)tagged jet productions and b $ \bar {b} $ dijet correlations in Pb+Pb at the LHC.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Letessier, Jean, et Johann Rafelski. « Chemical nonequilibrium in high-energy nuclear collisions ». Journal of Physics G : Nuclear and Particle Physics 25, no 2 (1 janvier 1999) : 295–309. http://dx.doi.org/10.1088/0954-3899/25/2/018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Sano, M., et M. Wakai. « Hypernuclear Production in High-Energy Nuclear Collisions ». Progress of Theoretical Physics Supplement 117 (17 mai 2013) : 99–121. http://dx.doi.org/10.1143/ptp.117.99.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Mrówczyński, Stanisław. « Chemical fluctuations in high-energy nuclear collisions ». Physics Letters B 459, no 1-3 (juillet 1999) : 13–20. http://dx.doi.org/10.1016/s0370-2693(99)00663-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Jia, Jiangyong. « Collective phenomena in high-energy nuclear collisions ». Nuclear Physics A 931 (novembre 2014) : 216–26. http://dx.doi.org/10.1016/j.nuclphysa.2014.08.045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Damjanovic, Sanja. « Thermal dileptons in high-energy nuclear collisions ». Progress in Particle and Nuclear Physics 62, no 2 (avril 2009) : 486–91. http://dx.doi.org/10.1016/j.ppnp.2008.12.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Seibert, David. « “Intermittency” in high-energy and nuclear collisions ». Physics Letters B 240, no 1-2 (avril 1990) : 215–18. http://dx.doi.org/10.1016/0370-2693(90)90436-a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Chen, Shi-Yong, Ben-Wei Zhang et Enke Wang. « Jet charge in high-energy nuclear collisions ». Chinese Physics C 44, no 2 (28 janvier 2020) : 024103. http://dx.doi.org/10.1088/1674-1137/44/2/024103.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Nakayama, K., et G. Bertsch. « High energy photon production in nuclear collisions ». Physical Review C 34, no 6 (1 décembre 1986) : 2190–200. http://dx.doi.org/10.1103/physrevc.34.2190.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Wakai, M., H. Band et M. Sano. « Hypernucleus formation in high-energy nuclear collisions ». Physical Review C 38, no 2 (1 août 1988) : 748–59. http://dx.doi.org/10.1103/physrevc.38.748.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Schweda, Kai, et Nu Xu. « Partonic Collectivity in High-Energy Nuclear Collisions ». Acta Physica Hungarica A) Heavy Ion Physics 22, no 1-2 (1 mars 2005) : 103–11. http://dx.doi.org/10.1556/aph.22.2005.1-2.11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Bashir, Inam-ul, Rameez Ahmad Parra, Hamid Nanda et Saeed Uddin. « Energy Dependence of Particle Ratios in High Energy Nucleus-Nucleus Collisions : A USTFM Approach ». Advances in High Energy Physics 2018 (2018) : 1–9. http://dx.doi.org/10.1155/2018/9285759.

Texte intégral
Résumé :
We study the identified particle ratios produced at mid-rapidity (y<0.5) in heavy-ion collisions, along with their correlations with the collision energy. We employ our earlier proposed unified statistical thermal freeze-out model (USTFM), which incorporates the effects of both longitudinal and transverse hydrodynamic flow in the hot hadronic system. A fair agreement seen between the experimental data and our model results confirms that the particle production in these collisions is of statistical nature. The variation of the chemical freeze-out temperature and the baryon chemical potential with respect to collision energies is studied. The chemical freeze-out temperature is found to be almost constant beyond the RHIC energy and is found to be close to the QCD predicted phase-transition temperature suggesting that the chemical freeze-out occurs soon after the hadronization takes place. The vanishing value of chemical potential at LHC indicates very high degree of nuclear transparency in the collision.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Blažek, Mikuláš. « Multifractality in High Energy Collisions ». Fractals 05, no 02 (juin 1997) : 309–20. http://dx.doi.org/10.1142/s0218348x97000292.

Texte intégral
Résumé :
With increasing energy of nuclear collisions, several statistical distributions of produced particles show changes in shape. This also concerns the scaling indices which characterize multifractality in the observed particle density distributions. In the present contribution, the self-similar processes governing that multifractality are described in more detail. It is shown especially that the corresponding extended fundamental equation reproduces, with very good accuracy, the data resulting from the oxygen beam at 60 and 200 A GeV colliding with the emulsion nuclei. The approximate description of the quantities characterizing scaling properties near the quark-gluon phase transition is discussed too.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Durand, Dominique. « Nuclear matter from nuclear collisions ». Nuclear Physics A 654, no 1-2 (juillet 1999) : C273—C293. http://dx.doi.org/10.1016/s0375-9474(99)00258-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

A. Trainor, Thomas. « Collectivity and manifestations of minimum-bias jets in high-energy nuclear collisions ». EPJ Web of Conferences 172 (2018) : 05004. http://dx.doi.org/10.1051/epjconf/201817205004.

Texte intégral
Résumé :
Collectivity, as interpreted to mean flow of a dense medium in high-energy A-A collisions described by hydrodynamics, has been attributed to smaller collision systems – p-A and even p-p collisions – based on recent analysis of LHC data. However, alternative methods reveal that some data features attributed to flows are actually manifestations of minimum-bias (MB) jets. In this presentation I review the differential structure of single-particle pt spectra from SPS to LHC energies in the context of a two-component (soft + hard) model (TCM) of hadron production. I relate the spectrum hard component to measured properties of isolated jets. I use the spectrum TCM to predict accurately the systematics of ensemble-mean p̅t in p-p, p-A and A-A collision systems over a large energy interval. Detailed comparisons of the TCM with spectrum and correlation data suggest that MB jets play a dominant role in hadron production near midrapidity. Claimed flow phenomena are better explained as jet manifestations agreeing quantitatively with measured jet properties.
Styles APA, Harvard, Vancouver, ISO, etc.
34

XU, NU. « PARTONIC EQUATION OF STATE IN HIGH-ENERGY NUCLEAR COLLISIONS ». International Journal of Modern Physics E 16, no 03 (avril 2007) : 715–27. http://dx.doi.org/10.1142/s0218301307006228.

Texte intégral
Résumé :
After a brief introduction to the physics of high-energy nuclear collisions, we will present recent experimental results that are closely connected to the properties of the matter produced in Au + Au collisions at RHIC. Collective motion with parton degrees of freedom is called partonic collectivity. We will focus on collective observables such as transverse radial flow and elliptic flow. With experimental observations, we will demonstrate that collectivity is developed prior to the hadronic stage in heavy ion collisions at RHIC.
Styles APA, Harvard, Vancouver, ISO, etc.
35

STOCK, REINHARD. « HADRON FORMATION IN HIGH ENERGY ELEMENTARY AND NUCLEAR COLLISIONS ». International Journal of Modern Physics E 16, no 03 (avril 2007) : 687–714. http://dx.doi.org/10.1142/s0218301307006216.

Texte intégral
Résumé :
We consider the dynamical origin of the apparent statistical equilibrium that governs the yields, and yield ratios, of all hadron and resonance species (consisting of the three light quark flavours) produced in nucleus-nucleus collisions from AGS via SPS to RHIC energies [Formula: see text]. This hadro-chemical equilibrium state is well described, overall, by the grand canonical, quasi-classical Gibbs ensemble of all corresponding hadrons and resonances. In order to pin down the stochastic elements, featured by the dynamical evolution prior to hadron formation and hadronic "chemical" (i.e. species) freeze-out, and determining the eventual equilibrium state, we concentrate on the high energy domain, [Formula: see text], where a model of primordial perturbative QCD partonic shower evolution appears plausible. For guidance concerning a hadronization model we revisit the QCD description of jet-induced hadron formation in e+e- annihilation at LEP energy. At the end of the pQCD partonic shower evolution a stage of color neutralization and flavour recombination leads to transition into non perturbative QCD clusters or strings, that decay to hadrons/resonances under phase space dominance. The combination of stochastic shower multiplication and cluster decay to the phase space defined by the hadron/resonancemass and spin spectrum results in a hadronization output featuring statistical equilibrium of the species, which is well described by the canonical Gibbs ensemble. We then assume that hadronization in A + A collisions occurs from a similar stage of singlet cluster formation. However, owing to the extreme overall energy density these clusters should overlap spatially, giving rise to extended super-cluster formation, increasing with [Formula: see text], A and collision centrality. In the limit of an extended volume decaying coherently, hadronization is free of local quantum number conservation constraints. This leads to strangeness enhancement and explains the success of a grand canonical description.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Ray, Amlan. « Nuclear Orbiting At Low Energy Nuclear Collisions ». Nuclear Physics A 787, no 1-4 (mai 2007) : 499–506. http://dx.doi.org/10.1016/j.nuclphysa.2006.12.077.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Arleo, François, et Stéphane Peigné. « Quarkonium Suppression from Coherent Energy Loss in Fixed-Target Experiments Using LHC Beams ». Advances in High Energy Physics 2015 (2015) : 1–6. http://dx.doi.org/10.1155/2015/961951.

Texte intégral
Résumé :
Quarkonium production in proton-nucleus collisions is a powerful tool to disentangle cold nuclear matter effects. A model based on coherent energy loss is able to explain the available quarkonium suppression data in a broad range of rapidities, from fixed-target to collider energies, suggesting coherent energy loss in cold nuclear matter to be the dominant effect in quarkonium suppression in p-A collisions. This could be further tested in a high-energy fixed-target experiment using a proton or nucleus beam. The nuclear modification factors ofJ/ψandΥas a function of rapidity are computed in p-A collisions ats=114.6 GeV, and in p-Pb and Pb-Pb collisions ats=72 GeV. These center-of-mass energies correspond to the collision on fixed-target nuclei of 7 TeV protons and 2.76 TeV (per nucleon) lead nuclei available at the LHC.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Lavagno, A., D. Pigato et G. Gervino. « Thermodynamic instabilities in high energy heavy-ion collisions ». Modern Physics Letters B 29, no 18 (10 juillet 2015) : 1550092. http://dx.doi.org/10.1142/s021798491550092x.

Texte intégral
Résumé :
One of the very interesting aspects of high energy heavy-ion collisions experiments is a detailed study of the thermodynamical properties of strongly interacting nuclear matter away from the nuclear ground state. In this direction, many efforts were focused on searching for possible phase transitions in such collisions. We investigate thermodynamic instabilities in a hot and dense nuclear medium where a phase transition from nucleonic matter to resonance-dominated [Formula: see text]-matter can take place. Such a phase transition can be characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the strangeness concentration) in asymmetric nuclear matter. In analogy with the liquid–gas nuclear phase transition, hadronic phases with different values of antibaryon–baryon ratios and strangeness content may coexist. Such a physical regime could be, in principle, investigated in the future high-energy compressed nuclear matter experiments which will make it possible to create compressed baryonic matter with a high net baryon density.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Zhao, Hai-Fu, Bao-Chun Li et Hong-Wei Dong. « Investigation of Particle Distributions in Xe-Xe Collision at sNN=5.44 TeV with the Tsallis Statistics ». Advances in High Energy Physics 2020 (11 février 2020) : 1–6. http://dx.doi.org/10.1155/2020/3724761.

Texte intégral
Résumé :
The distribution characteristic of final-state particles is one of the significant parts in high-energy nuclear collisions. The transverse momentum distribution of charged particles carries essential evolution information about the collision system. The Tsallis statistics is used to investigate the transverse momentum distribution of charged particles produced in Xe-Xe collisions at sNN=5.44 TeV. On this basis, we reproduce the nuclear modification factor of the charged particles. The calculated results agree approximately with the experimental data measured by the ALICE Collaboration.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Gyulassy, M., V. Topor Pop et S. E. Vance. « Baryon number transport in high-energy nuclear collisions ». Acta Physica Hungarica A) Heavy Ion Physics 5, no 3 (juin 1997) : 299–318. http://dx.doi.org/10.1007/bf03053659.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Carruthers, P., H. C. Eggers et Ina Sarcevic. « Correlations and intermittency in high-energy nuclear collisions ». Physical Review C 44, no 4 (1 octobre 1991) : 1629–35. http://dx.doi.org/10.1103/physrevc.44.1629.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Seibert, David, et George Fai. « Heavy-resonance production in high-energy nuclear collisions ». Physical Review C 50, no 5 (1 novembre 1994) : 2532–39. http://dx.doi.org/10.1103/physrevc.50.2532.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Neumann, John J., David Seibert et George Fai. « Thermal photon production in high-energy nuclear collisions ». Physical Review C 51, no 3 (1 mars 1995) : 1460–64. http://dx.doi.org/10.1103/physrevc.51.1460.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Baym, Gordon, B. Blättel, L. L. Frankfurt, H. Heiselberg et M. Strikman. « Correlations and fluctuations in high-energy nuclear collisions ». Physical Review C 52, no 3 (1 septembre 1995) : 1604–17. http://dx.doi.org/10.1103/physrevc.52.1604.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Seibert, David. « Quark-matter droplets in high-energy nuclear collisions ». Physical Review Letters 63, no 2 (10 juillet 1989) : 136–38. http://dx.doi.org/10.1103/physrevlett.63.136.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Rapp, Ralf. « π+π− emission in high-energy nuclear collisions ». Nuclear Physics A 725 (septembre 2003) : 254–68. http://dx.doi.org/10.1016/s0375-9474(03)01581-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Wakai, M., H. Bandō et M. Sano. « Mesonic atom production in high-energy nuclear collisions ». Zeitschrift für Physik A Atomic Nuclei 333, no 2 (juin 1989) : 213–18. http://dx.doi.org/10.1007/bf01565153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Wong, S. M. H. « Quantifying baryon stopping in high energy nuclear collisions ». Physics Letters B 480, no 1-2 (mai 2000) : 65–70. http://dx.doi.org/10.1016/s0370-2693(00)00408-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Zhang, Ben-Wei. « Full jet tomography of high-energy nuclear collisions ». Nuclear Physics A 855, no 1 (avril 2011) : 52–59. http://dx.doi.org/10.1016/j.nuclphysa.2011.02.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Nadeau, Hendrickje. « Photon emission from very high energy nuclear collisions ». Physical Review D 48, no 7 (1 octobre 1993) : 3182–89. http://dx.doi.org/10.1103/physrevd.48.3182.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie