Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Hierarchical spatial modeling.

Livres sur le sujet « Hierarchical spatial modeling »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 23 meilleurs livres pour votre recherche sur le sujet « Hierarchical spatial modeling ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les livres sur diverses disciplines et organisez correctement votre bibliographie.

1

P, Carlin Bradley, et Gelfand Alan E. 1945-, dir. Hierarchical modeling and analysis for spatial data. Boca Raton : Chapman & Hall, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lawson, Andrew. Bayesian disease mapping : Hierarchical modeling in spatial epidemiology. Boca Raton : Taylor & Francis, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dorazio, Robert M. (Robert Matthew) et ScienceDirect (Online service), dir. Hierarchical modeling and inference in ecology : The analysis of data from populations, metapopulations and communities. Amsterdam : Academic, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Carlin, Bradley P., Sudipto Banerjee et Alan E. Gelfand. Hierarchical Modeling and Analysis for Spatial Data. Taylor & Francis Group, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Carlin, Bradley P., Sudipto Banerjee et Alan E. Gelfand. Hierarchical Modeling and Analysis for Spatial Data. Taylor & Francis Group, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Carlin, Bradley P., Sudipto Banerjee, Alan E. Gelfand et Banerjee Sudipto Staff. Hierarchical Modeling and Analysis for Spatial Data. Taylor & Francis Group, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Banerjee, Sudipto. Hierarchical Modeling and Analysis for Spatial Data. Taylor & Francis Group, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Banerjee, Sudipto, Bradley P. Carlin et Alan E. Gelfand. Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall/CRC, 2014. http://dx.doi.org/10.1201/b17115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Banerjee, Sudipto, Bradley P. Carlin, Alan E. Gelfand et Sudipto Banerjee. Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall/CRC, 2003. http://dx.doi.org/10.1201/9780203487808.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lawson, Andrew B. Bayesian Disease Mapping : Hierarchical Modeling in Spatial Epidemiology. Taylor & Francis Group, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Lawson, Andrew B. Bayesian Disease Mapping : Hierarchical Modeling in Spatial Epidemiology. Taylor & Francis Group, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Keiding, Niels, Andrew B. Lawson, Terry Speed, Byron J. Morgan et Peter Van Der Heijden. Bayesian Disease Mapping : Hierarchical Modeling in Spatial Epidemiology. Taylor & Francis Group, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Bayesian Disease Mapping Hierarchical Modeling In Spatial Epidemiology. Taylor & Francis Inc, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Lawson, Andrew B. Bayesian Disease Mapping : Hierarchical Modeling in Spatial Epidemiology, Third Edition. Taylor & Francis Group, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Lawson, Andrew B. Bayesian Disease Mapping : Hierarchical Modeling in Spatial Epidemiology, Third Edition. Taylor & Francis Group, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Lawson, Andrew B. Bayesian Disease Mapping : Hierarchical Modeling in Spatial Epidemiology, Second Edition. Taylor & Francis Group, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Lawson, Andrew B. Bayesian Disease Mapping : Hierarchical Modeling in Spatial Epidemiology, Third Edition. Taylor & Francis Group, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Lawson, Andrew B. Bayesian Disease Mapping : Hierarchical Modeling in Spatial Epidemiology, Third Edition. Taylor & Francis Group, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Bayesian Disease Mapping : Hierarchical Modeling in Spatial Epidemiology, Third Edition. Chapman and Hall/CRC, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Gelfand, Alan E., Bradley P. Carlin et Sudipto Banerjee. Hierarchical Modeling and Analysis for Spatial Data (Monographs on Statistics and Applied Probability). Chapman & Hall/CRC, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Royle, J. Andrew, et Robert M. Dorazio. Hierarchical Modeling and Inference in Ecology : The Analysis of Data from Populations, Metapopulations and Communities. Elsevier Science & Technology Books, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Royle, J. Andrew, et Marc Kery. Applied Hierarchical Modeling in Ecology : Analysis of Distribution, Abundance and Species Richness in R and BUGS Vol. 1 : Volume 1 : Prelude and Static Models. Elsevier Science & Technology Books, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Wikle, Christopher K. Spatial Statistics. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.710.

Texte intégral
Résumé :
The climate system consists of interactions between physical, biological, chemical, and human processes across a wide range of spatial and temporal scales. Characterizing the behavior of components of this system is crucial for scientists and decision makers. There is substantial uncertainty associated with observations of this system as well as our understanding of various system components and their interaction. Thus, inference and prediction in climate science should accommodate uncertainty in order to facilitate the decision-making process. Statistical science is designed to provide the tools to perform inference and prediction in the presence of uncertainty. In particular, the field of spatial statistics considers inference and prediction for uncertain processes that exhibit dependence in space and/or time. Traditionally, this is done descriptively through the characterization of the first two moments of the process, one expressing the mean structure and one accounting for dependence through covariability.Historically, there are three primary areas of methodological development in spatial statistics: geostatistics, which considers processes that vary continuously over space; areal or lattice processes, which considers processes that are defined on a countable discrete domain (e.g., political units); and, spatial point patterns (or point processes), which consider the locations of events in space to be a random process. All of these methods have been used in the climate sciences, but the most prominent has been the geostatistical methodology. This methodology was simultaneously discovered in geology and in meteorology and provides a way to do optimal prediction (interpolation) in space and can facilitate parameter inference for spatial data. These methods rely strongly on Gaussian process theory, which is increasingly of interest in machine learning. These methods are common in the spatial statistics literature, but much development is still being done in the area to accommodate more complex processes and “big data” applications. Newer approaches are based on restricting models to neighbor-based representations or reformulating the random spatial process in terms of a basis expansion. There are many computational and flexibility advantages to these approaches, depending on the specific implementation. Complexity is also increasingly being accommodated through the use of the hierarchical modeling paradigm, which provides a probabilistically consistent way to decompose the data, process, and parameters corresponding to the spatial or spatio-temporal process.Perhaps the biggest challenge in modern applications of spatial and spatio-temporal statistics is to develop methods that are flexible yet can account for the complex dependencies between and across processes, account for uncertainty in all aspects of the problem, and still be computationally tractable. These are daunting challenges, yet it is a very active area of research, and new solutions are constantly being developed. New methods are also being rapidly developed in the machine learning community, and these methods are increasingly more applicable to dependent processes. The interaction and cross-fertilization between the machine learning and spatial statistics community is growing, which will likely lead to a new generation of spatial statistical methods that are applicable to climate science.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie