Articles de revues sur le sujet « HETEROCHIRAL PEPTIDE »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : HETEROCHIRAL PEPTIDE.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « HETEROCHIRAL PEPTIDE ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Mortenson, David E., Jay D. Steinkruger, Dale F. Kreitler, Dominic V. Perroni, Gregory P. Sorenson, Lijun Huang, Ritesh Mittal et al. « High-resolution structures of a heterochiral coiled coil ». Proceedings of the National Academy of Sciences 112, no 43 (12 octobre 2015) : 13144–49. http://dx.doi.org/10.1073/pnas.1507918112.

Texte intégral
Résumé :
Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from d amino acids (d peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein–protein interactions. Coiled–coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled–coil interactions were predicted over 50 years ago by Crick, and limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report two independent crystal structures that elucidate coiled-coil packing between l- and d-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. However, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Demizu, Yosuke, Hiroko Yamashita, Takashi Misawa, Mitsunobu Doi, Makoto Oba, Masakazu Tanaka et Masaaki Kurihara. « Handedness Preferences of Heterochiral Helical Peptides Containing Homochiral Peptide Segments ». European Journal of Organic Chemistry 2016, no 4 (5 janvier 2016) : 840–46. http://dx.doi.org/10.1002/ejoc.201501146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Goyal, Ruchika, Gaurav Jerath, Aneesh Chandrasekharan, T. R. Santhosh Kumar et Vibin Ramakrishnan. « Peptide-based delivery vectors with pre-defined geometrical locks ». RSC Medicinal Chemistry 11, no 11 (2020) : 1303–13. http://dx.doi.org/10.1039/d0md00229a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kovačević, Monika, Mojca Čakić Semenčić, Kristina Radošević, Krešimir Molčanov, Sunčica Roca, Lucija Šimunović, Ivan Kodrin et Lidija Barišić. « Conformational Preferences and Antiproliferative Activity of Peptidomimetics Containing Methyl 1′-Aminoferrocene-1-carboxylate and Turn-Forming Homo- and Heterochiral Pro-Ala Motifs ». International Journal of Molecular Sciences 22, no 24 (16 décembre 2021) : 13532. http://dx.doi.org/10.3390/ijms222413532.

Texte intégral
Résumé :
The concept of peptidomimetics is based on structural modifications of natural peptides that aim not only to mimic their 3D shape and biological function, but also to reduce their limitations. The peptidomimetic approach is used in medicinal chemistry to develop drug-like compounds that are more active and selective than natural peptides and have fewer side effects. One of the synthetic strategies for obtaining peptidomimetics involves mimicking peptide α-helices, β-sheets or turns. Turns are usually located on the protein surface where they interact with various receptors and are therefore involved in numerous biological events. Among the various synthetic tools for turn mimetic design reported so far, our group uses an approach based on the insertion of different ferrocene templates into the peptide backbone that both induce turn formation and reduce conformational flexibility. Here, we conjugated methyl 1′-aminoferrocene-carboxylate with homo- and heterochiral Pro-Ala dipeptides to investigate the turn formation potential and antiproliferative properties of the resulting peptidomimetics 2–5. Detailed spectroscopic (IR, NMR, CD), X-ray and DFT studies showed that the heterochiral conjugates 2 and 3 were more suitable for the formation of β-turns. Cell viability study, clonogenic assay and cell death analysis showed the highest biological potential of homochiral peptide 4.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Matsuda, Kenichi, Rui Zhai, Takahiro Mori, Masakazu Kobayashi, Ayae Sano, Ikuro Abe et Toshiyuki Wakimoto. « Heterochiral coupling in non-ribosomal peptide macrolactamization ». Nature Catalysis 3, no 6 (4 mai 2020) : 507–15. http://dx.doi.org/10.1038/s41929-020-0456-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Park, Hae Sook, et Young Kee Kang. « Impact of aza-substitutions on the preference of helix handedness for β-peptide oligomers : a DFT study ». RSC Advances 13, no 5 (2023) : 3079–82. http://dx.doi.org/10.1039/d2ra07575j.

Texte intégral
Résumé :
The helix preferences of the heterochiral pentamers of c-ACHC and c-ACPC with alternating backbone configurations by replacing Cβ- or Cα-aza-peptide residues were studied using DFT methods in solution.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Alkorta, Ibon, et José Elguero. « Theoretical study of peptide model dimers. Homo versus heterochiral complexes ». Journal of Molecular Structure : THEOCHEM 680, no 1-3 (juillet 2004) : 191–98. http://dx.doi.org/10.1016/j.theochem.2004.04.030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Xie, Yan-Yan, Xue-Qi Wang, Mei-Yan Sun, Xiao-Tong Qin, Xiao-Feng Su, Xiao-Fang Ma, Xiao-Zhi Liu, Cheng Zhong et Shi-Ru Jia. « Heterochiral peptide-based biocompatible and injectable supramolecular hydrogel with antibacterial activity ». Journal of Materials Science 57, no 8 (février 2022) : 5198–209. http://dx.doi.org/10.1007/s10853-022-06982-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Birch, David, Michael North, Roger R. Hill et G. E. Jeffs. « Stereochemical preference for heterochiral coupling controls selectivity in competitive peptide synthesis ». Chemical Communications, no 10 (1999) : 941–42. http://dx.doi.org/10.1039/a901730e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rivera Islas, Jesús, Véronique Pimienta, Jean-Claude Micheau et Thomas Buhse. « Kinetic analysis of artificial peptide self-replication. Part II : The heterochiral case ». Biophysical Chemistry 103, no 3 (mars 2003) : 201–11. http://dx.doi.org/10.1016/s0301-4622(02)00249-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Zerze, Gül H., Frank H. Stillinger et Pablo G. Debenedetti. « Effect of heterochiral inversions on the structure of a β‐hairpin peptide ». Proteins : Structure, Function, and Bioinformatics 87, no 7 (18 mars 2019) : 569–78. http://dx.doi.org/10.1002/prot.25680.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Carlomagno, Tiziano, Maria C. Cringoli, Slavko Kralj, Marina Kurbasic, Paolo Fornasiero, Paolo Pengo et Silvia Marchesan. « Biocatalysis of d,l-Peptide Nanofibrillar Hydrogel ». Molecules 25, no 13 (30 juin 2020) : 2995. http://dx.doi.org/10.3390/molecules25132995.

Texte intégral
Résumé :
Self-assembling peptides are attracting wide interest as biodegradable building blocks to achieve functional nanomaterials that do not persist in the environment. Amongst the many applications, biocatalysis is gaining momentum, although a clear structure-to-activity relationship is still lacking. This work applied emerging design rules to the heterochiral octapeptide sequence His–Leu–DLeu–Ile–His–Leu–DLeu–Ile for self-assembly into nanofibrils that, at higher concentration, give rise to a supramolecular hydrogel for the mimicry of esterase-like activity. The peptide was synthesized by solid-phase and purified by HPLC, while its identity was confirmed by 1H-NMR and electrospray ionization (ESI)-MS. The hydrogel formed by this peptide was studied with oscillatory rheometry, and the supramolecular behavior of the peptide was investigated with transmission electron microscopy (TEM) analysis, circular dichroism (CD) spectroscopy, thioflavin T amyloid fluorescence assay, and attenuated total reflectance (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The biocatalytic activity was studied by monitoring the hydrolysis of p-nitrophenyl acetate (pNPA) at neutral pH, and the reaction kinetics followed an apparent Michaelis–Menten model, for which a Lineweaver–Burk plot was produced to determine its enzymatic parameters for a comparison with the literature. Finally, LC–MS analysis was conducted on a series of experiments to evaluate the extent of, if any, undesired peptide acetylation at the N-terminus. In conclusion, we provide new insights that allow gaining a clearer picture of self-assembling peptide design rules for biocatalysis.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Birch, David, Roger R. Hill, G. E. Jeffs et Michael North. « ChemInform Abstract : Stereochemical Preference for Heterochiral Coupling Controls Selectivity in Competitive Peptide Synthesis. » ChemInform 30, no 37 (13 juin 2010) : no. http://dx.doi.org/10.1002/chin.199937212.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Marchesan, S., K. E. Styan, C. D. Easton, L. Waddington et A. V. Vargiu. « Higher and lower supramolecular orders for the design of self-assembled heterochiral tripeptide hydrogel biomaterials ». Journal of Materials Chemistry B 3, no 41 (2015) : 8123–32. http://dx.doi.org/10.1039/c5tb00858a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kim, J. Dongun, Douglas H. Pike, Alexei M. Tyryshkin, G. V. T. Swapna, Hagai Raanan, Gaetano T. Montelione, Vikas Nanda et Paul G. Falkowski. « Minimal Heterochiral de Novo Designed 4Fe–4S Binding Peptide Capable of Robust Electron Transfer ». Journal of the American Chemical Society 140, no 36 (24 août 2018) : 11210–13. http://dx.doi.org/10.1021/jacs.8b07553.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Saha, Indranil, Bhaswati Chatterjee, Narayanaswamy Shamala et Padmanabhan Balaram. « Crystal structures of peptide enantiomers and racemates : Probing conformational diversity in heterochiral Pro-Pro sequences ». Biopolymers 90, no 4 (2008) : 537–43. http://dx.doi.org/10.1002/bip.20982.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Späth, Julia, Fiona Stuart, Luyong Jiang et John A Robinson. « Stabilization of aβ-Hairpin Conformation in a Cyclic Peptide Using the Templating Effect of a Heterochiral Diproline Unit ». Helvetica Chimica Acta 81, no 9 (9 septembre 1998) : 1726–38. http://dx.doi.org/10.1002/(sici)1522-2675(19980909)81:9<1726 ::aid-hlca1726>3.0.co;2-h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Makarević, Janja, Milan Jokić, Leo Frkanec, Vesna Čaplar, Nataša Šijaković Vujičić et Mladen Žinić. « Oxalyl retro-peptide gelators. Synthesis, gelation properties and stereochemical effects ». Beilstein Journal of Organic Chemistry 6 (4 octobre 2010) : 945–59. http://dx.doi.org/10.3762/bjoc.6.106.

Texte intégral
Résumé :
In this work we report on gelation properties, self-assembly motifs, chirality effects and morphological characteristics of gels formed by chiral retro-dipeptidic gelators in the form of terminal diacids (1a–5a) and their dimethyl ester (1b–5b) and dicarboxamide (1c–5c) derivatives. Terminal free acid retro-dipeptides (S,S)-bis(LeuLeu) 1a, (S,S)-bis(PhgPhg) 3a and (S,S)-bis(PhePhe) 5a showed moderate to excellent gelation of highly polar water/DMSO and water/DMF solvent mixtures. Retro-peptides incorporating different amino acids (S,S)-(LeuPhg) 2a and (S,S)-(PhgLeu) 4a showed no or very weak gelation. Different gelation effectiveness was found for racemic and single enantiomer gelators. The heterochiral (S,R)-1c diastereoisomer is capable of immobilizing up to 10 and 4 times larger volumes of dichloromethane/DMSO and toluene/DMSO solvent mixtures compared to homochiral (S,S)-1c. Based on the results of 1H NMR, FTIR, CD investigations, molecular modeling and XRPD studies of diasteroisomeric diesters (S,S)-1b/(S,R)-1b and diacids (S,S)-1b/(S,R)-1a, a basic packing model in their gel aggregates is proposed. The intermolecular hydrogen bonding between extended gelator molecules utilizing both, the oxalamide and peptidic units and layered organization were identified as the most likely motifs appearing in the gel aggregates. Molecular modeling studies of (S,S)- 1a/(S,R)-1a and (S,S)-1b/(S,R)- 1b diasteroisomeric pairs revealed a decisive stereochemical influence yielding distinctly different low energy conformations: those of (S,R)-diastereoisomers with lipophilic i-Bu groups and polar carboxylic acid or ester groups located on the opposite sides of the oxalamide plane resembling bola amphiphilic structures and those of (S,S)-diasteroisomers possessing the same groups located at both sides of the oxalamide plane. Such conformational characteristics were found to strongly influence both, gelator effectiveness and morphological characteristics of gel aggregates.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Bhadbhade, Mohan M., et Raghuvansh Kishore. « Intramolecular CH···O Hydrogen-bond mediated stabilization of a Cis-DPro imide-bond in a stereocontrolled heterochiral model peptide ». Biopolymers 97, no 1 (19 août 2011) : 73–82. http://dx.doi.org/10.1002/bip.21705.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

NAGARAJAN, V., VASANTHA PATTABHI, A. JOHNSON, V. BOBDE et S. DURANI. « Crystal structures of heterochiral peptides ». Journal of Peptide Research 49, no 1 (12 janvier 2009) : 74–79. http://dx.doi.org/10.1111/j.1399-3011.1997.tb01123.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

EGGLESTON, DRAKE S. « Heterochiral N-formyl methionyl peptides ». International Journal of Peptide and Protein Research 31, no 2 (12 janvier 2009) : 164–72. http://dx.doi.org/10.1111/j.1399-3011.1988.tb00019.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Marchesan, S., C. D. Easton, K. E. Styan, L. J. Waddington, F. Kushkaki, L. Goodall, K. M. McLean, J. S. Forsythe et P. G. Hartley. « Chirality effects at each amino acid position on tripeptide self-assembly into hydrogel biomaterials ». Nanoscale 6, no 10 (2014) : 5172–80. http://dx.doi.org/10.1039/c3nr06752a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Guardiola, Salvador, Monica Varese, Xavier Roig, Macarena Sánchez-Navarro, Jesús García et Ernest Giralt. « Target-templated de novo design of macrocyclic d-/l-peptides : discovery of drug-like inhibitors of PD-1 ». Chemical Science 12, no 14 (2021) : 5164–70. http://dx.doi.org/10.1039/d1sc01031j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Florio, Daniele, Concetta Di Natale, Pasqualina Liana Scognamiglio, Marilisa Leone, Sara La Manna, Sarah Di Somma, Paolo Antonio Netti, Anna Maria Malfitano et Daniela Marasco. « Self-assembly of bio-inspired heterochiral peptides ». Bioorganic Chemistry 114 (septembre 2021) : 105047. http://dx.doi.org/10.1016/j.bioorg.2021.105047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Clover, Tara M., Conor L. O’Neill, Rajagopal Appavu, Giriraj Lokhande, Akhilesh K. Gaharwar, Ammon E. Posey, Mark A. White et Jai S. Rudra. « Self-Assembly of Block Heterochiral Peptides into Helical Tapes ». Journal of the American Chemical Society 142, no 47 (27 avril 2020) : 19809–13. http://dx.doi.org/10.1021/jacs.9b09755.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Nanda, Vikas, et William F. DeGrado. « Computational Design of Heterochiral Peptides against a Helical Target ». Journal of the American Chemical Society 128, no 3 (janvier 2006) : 809–16. http://dx.doi.org/10.1021/ja054452t.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Munegumi, Toratane, et Akira Shimoyama. « Separation of homochiral peptides and heterochiral peptides in the developement of homochirality ». Origins of Life and Evolution of the Biosphere 26, no 3-5 (octobre 1996) : 388–89. http://dx.doi.org/10.1007/bf02459827.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Chatterjee, Bhaswati, Indranil Saha, Srinivasarao Raghothama, Subrayashastry Aravinda, Rajkishor Rai, Narayanaswamy Shamala et Padmanabhan Balaram. « Designed Peptides with Homochiral and Heterochiral Diproline Templates as Conformational Constraints ». Chemistry - A European Journal 14, no 20 (7 juillet 2008) : 6192–204. http://dx.doi.org/10.1002/chem.200702029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Liu, Xinyu, et Samuel H. Gellman. « Comparisons of β‐Hairpin Propensity Among Peptides with Homochiral or Heterochiral Strands ». ChemBioChem 22, no 18 (30 juillet 2021) : 2772–76. http://dx.doi.org/10.1002/cbic.202100324.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Jeena, M. T., Keunsoo Jeong, Eun Min Go, Yuri Cho, Seokyung Lee, Seongeon Jin, Suk-Won Hwang et al. « Heterochiral Assembly of Amphiphilic Peptides Inside the Mitochondria for Supramolecular Cancer Therapeutics ». ACS Nano 13, no 10 (11 septembre 2019) : 11022–33. http://dx.doi.org/10.1021/acsnano.9b02522.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Balamurugan, Dhayalan, et Kannoth M. Muraleedharan. « Conformational Switching in Heterochiral α,β2,3-Hybrid Peptides in Response to Solvent Polarity ». European Journal of Organic Chemistry 2015, no 24 (20 juillet 2015) : 5321–25. http://dx.doi.org/10.1002/ejoc.201500534.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Kantharaju, Srinivasarao Raghothama, Upadhyayula Surya Raghavender, Subrayashastry Aravinda, Narayanaswamy Shamala et Padmanabhan Balaram. « Conformations of heterochiral and homochiral proline-pseudoproline segments in peptides : Context dependentcis-transpeptide bond isomerization ». Biopolymers 92, no 5 (2009) : 405–16. http://dx.doi.org/10.1002/bip.21207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Munegumi, Toratane, et Akira Shimoyama. « Development of homochiral peptides in the chemical evolutionary process : Separation of homochiral and heterochiral oligopeptides ». Chirality 15, S1 (2003) : S108—S115. http://dx.doi.org/10.1002/chir.10256.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Čakić Semenčić, Mojca, Ivan Kodrin, Lidija Barišić, Marko Nuskol et Anton Meden. « Synthesis and Conformational Study of Monosubstituted Aminoferrocene-Based Peptides Bearing Homo- and Heterochiral Pro-Ala Sequences ». European Journal of Inorganic Chemistry 2017, no 2 (16 août 2016) : 306–17. http://dx.doi.org/10.1002/ejic.201600648.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Fabiola, G. Felcy, Vivek Bobde, L. Damodharan, Vasantha Pattabhi et S. Durani. « Conformational Preferences of Heterochiral Peptides. Crystal Structures of Heterochiral Peptides Boc-(D) Val-(D) Ala-Leu-Ala-OMe and Boc-Val-Ala-Leu-(D) Ala-OMe-Enhanced Stability of β-sheet Through C-H…O Hydrogen Bonds ». Journal of Biomolecular Structure and Dynamics 18, no 4 (1 février 2001) : 579–94. http://dx.doi.org/10.1080/07391102.2001.10506690.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Favre, Michel, Kerstin Moehle, Luyong Jiang, Bernhard Pfeiffer et John A. Robinson. « Structural Mimicry of Canonical Conformations in Antibody Hypervariable Loops Using Cyclic Peptides Containing a Heterochiral Diproline Template ». Journal of the American Chemical Society 121, no 12 (mars 1999) : 2679–85. http://dx.doi.org/10.1021/ja984016p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Lee, Hye-soo, et Yong-beom Lim. « Slow-Motion Self-Assembly : Access to Intermediates with Heterochiral Peptides to Gain Control over Alignment Media Development ». ACS Nano 14, no 3 (14 février 2020) : 3344–52. http://dx.doi.org/10.1021/acsnano.9b09070.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Demizu, Yosuke, Hiroko Yamashita, Mitsunobu Doi, Takashi Misawa, Makoto Oba, Masakazu Tanaka et Masaaki Kurihara. « Topological Study of the Structures of Heterochiral Peptides Containing Equal Amounts of l-Leu and d-Leu ». Journal of Organic Chemistry 80, no 17 (22 août 2015) : 8597–603. http://dx.doi.org/10.1021/acs.joc.5b01541.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Kamada, Rui, Natsumi Nakagawa, Taiji Oyama et Kazuyasu Sakaguchi. « Heterochiral Jun and Fos bZIP peptides form a coiled-coil heterodimer that is competent for DNA binding ». Journal of Peptide Science 23, no 7-8 (10 février 2017) : 644–49. http://dx.doi.org/10.1002/psc.2985.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Udagawa, Hinako, Takato H. Yoneda, Ryo Masuda et Takaki Koide. « A Strategy for Discovering Heterochiral Bioactive Peptides by Using the OB2 n P Library and SPOTs Method ». ChemBioChem 20, no 16 (15 juillet 2019) : 2070–73. http://dx.doi.org/10.1002/cbic.201900237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Zhou, Yu, Chris Oostenbrink, Wilfred F. Van Gunsteren, Wilfred R. Hagen, Simon W. De Leeuw et Jaap A. Jongejan *. « Relative stability of homochiral and heterochiral dialanine peptides. Effects of perturbation pathways and force-field parameters on free energy calculations ». Molecular Physics 103, no 14 (20 juillet 2005) : 1961–69. http://dx.doi.org/10.1080/00268970500096889.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Di Blasio, Benedetto, Michele Saviano, Valerio Del Duca, Giuseppina De Simone, Filomena Rossi, Carlo Pedone, Ettore Benedetti et Gian Paolo Lorenzi. « Conformational studies of heterochiral peptides with diastereoisomeric residues : Crystal and molecular structures of linear dipeptides derived from leucine, isoleucine, and allo-isoleucine ». Biopolymers 36, no 4 (octobre 1995) : 401–8. http://dx.doi.org/10.1002/bip.360360403.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Rao, I. Nageshwara, Anima Boruah, S. Kiran Kumar, A. C. Kunwar, A. Sivalakshmi Devi, K. Vyas, Krishnan Ravikumar et Javed Iqbal. « Synthesis and Conformational Studies of Novel Cyclic Peptides Constrained into a 310Helical Structure by a Heterochirald-Pro-l-Pro Dipeptide Template ». Journal of Organic Chemistry 69, no 6 (mars 2004) : 2181–84. http://dx.doi.org/10.1021/jo030282w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Zhou, Yu, Chris Oostenbrink, Aldo Jongejan, Wilfred F. Van Gunsteren, Wilfred R. Hagen, Simon W. De Leeuw et Jaap A. Jongejan. « Computational study of ground-state chiral induction in small peptides : Comparison of the relative stability of selected amino acid dimers and oligomers in homochiral and heterochiral combinations ». Journal of Computational Chemistry 27, no 7 (2006) : 857–67. http://dx.doi.org/10.1002/jcc.20378.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Shao, Ning, Ling Yuan, Pengcheng Ma, Min Zhou, Ximian Xiao, Zihao Cong, Yueming Wu, Guohui Xiao, Jian Fei et Runhui Liu. « Heterochiral β-Peptide Polymers Combating Multidrug-Resistant Cancers Effectively without Inducing Drug Resistance ». Journal of the American Chemical Society, 14 avril 2022. http://dx.doi.org/10.1021/jacs.2c00452.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Rai, Rishika, et Kana M. Sureshan. « Topochemical Synthesis of a Heterochiral Peptide Polymer in Different Polymorphic Forms from Crystals and Aerogels ». Angewandte Chemie International Edition 61, no 16 (23 février 2022). http://dx.doi.org/10.1002/anie.202111623.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Rai, Rishika, et Kana M. Sureshan. « Topochemical Synthesis of a Heterochiral Peptide Polymer in Different Polymorphic Forms from Crystals and Aerogels ». Angewandte Chemie 134, no 16 (23 février 2022). http://dx.doi.org/10.1002/ange.202111623.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Rahman, Md Wazedur, Mari C. Mañas-Torres, Seyedamin Firouzeh, Sara Illescas-Lopez, Juan Manuel Cuerva, Modesto T. Lopez-Lopez, Luis Álvarez de Cienfuegos et Sandipan Pramanik. « Chirality-Induced Spin Selectivity in Heterochiral Short-Peptide–Carbon-Nanotube Hybrid Networks : Role of Supramolecular Chirality ». ACS Nano, 11 octobre 2022. http://dx.doi.org/10.1021/acsnano.2c07040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Teng, Peng, Mengmeng Zheng, Darrell Cole Cerrato, Yan Shi, Mi Zhou, Songyi Xue, Wei Jiang et al. « The folding propensity of α/sulfono-γ-AA peptidic foldamers with both left- and right-handedness ». Communications Chemistry 4, no 1 (10 mai 2021). http://dx.doi.org/10.1038/s42004-021-00496-0.

Texte intégral
Résumé :
AbstractThe discovery and application of new types of helical peptidic foldamers have been an attractive endeavor to enable the development of new materials, catalysts and biological molecules. To maximize their application potential through structure-based design, it is imperative to control their helical handedness based on their molecular scaffold. Herein we first demonstrate the generalizability of the solid-state right-handed helical propensity of the 413-helix of L-α/L-sulfono-γ-AA peptides that as short as 11-mer, using the high-resolution X-ray single crystallography. The atomic level folding conformation of the foldamers was also elucidated by 2D NMR and circular dichroism under various conditions. Subsequently, we show that the helical handedness of this class of foldamer is controlled by the chirality of their chiral side chains, as demonstrated by the left-handed 413-helix comprising 1:1 D-α/D-sulfono-γ-AA peptide. In addition, a heterochiral coiled-coil-like structure was also revealed for the first time, unambiguously supporting the impact of chirality on their helical handedness. Our findings enable the structure-based design of unique folding biopolymers and materials with the exclusive handedness or the racemic form of the foldamers in the future.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Yang, Xuejiao, Honglei Lu, Yinghua Tao, Hongyue Zhang et Huaimin Wang. « Controlling supramolecular filament chirality of hydrogel by co-assembly of enantiomeric aromatic peptides ». Journal of Nanobiotechnology 20, no 1 (10 février 2022). http://dx.doi.org/10.1186/s12951-022-01285-0.

Texte intégral
Résumé :
AbstractSupramolecular chirality plays an indispensable role in living and synthetic systems. However, the generation and control of filament chirality in the supramolecular hydrogel of short peptides remains challenging. In this work, as the first example, we report that the heterodimerization of the enantiomeric mixture controls the alignment, chirality, and stiffness of fibrous hydrogels formed by aromatic building blocks. The properties of the resulting racemic hydrogel could not be achieved by either pure enantiomer. Cryo-EM images indicate that the mixture of L and D enantiomers forms chiral nanofibers, the percentage of which can be readily controlled through stoichiometric co-assembly of heterochiral enantiomers. 2D NOESY NMR and diffusion-ordered NMR spectroscopy reveal that heterodimerization of enantiomers plays a crucial role in the formation of chiral nanofibers. Further mechanistic studies unravel the mechanism of supramolecular chirality formation in this two-component system. Molecular dynamics simulations confirm that the intermolecular hydrogen bond and π–π interaction of heterodimers play important roles in forming a chiral hydrogel. Furthermore, regulation of the adhesion and morphology of mammalian cells is achieved by tuning the relative ratio of L and D enantiomers at the same concentration. This work illustrates a novel strategy to control the supramolecular chirality of aromatic peptide hydrogels for materials science. Graphical Abstract
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie