Articles de revues sur le sujet « HELICAL WIGGER »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : HELICAL WIGGER.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « HELICAL WIGGER ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Abedi-Varaki, Mehdi. « Electron acceleration of a surface wave propagating in wiggler-assisted plasma ». Modern Physics Letters B 33, no 23 (16 août 2019) : 1950267. http://dx.doi.org/10.1142/s0217984919502671.

Texte intégral
Résumé :
In this paper, we study the electron acceleration by a surface plasma wave (SPW) propagating through two parallel metal sheets in the presence of wiggler magnetic field strength. The configuration of interest consists of a helical magnetostatic wiggler, an external magnetic field and two parallel metal half-spaces. Dispersion relation of SPW in the attendance of helical magnetostatic wiggler is recognized and observed as compared with that of without wiggler field. A numerical calculation in Matlab software was developed by employing the fourth-order Runge–Kutta method for studying the electron energy and electron trajectory in SPW. Numerical results depict that with increasing of [Formula: see text]-parameter [Formula: see text] is the ratio of wiggler frequency to plasma frequency), minimum modes of SPW have an increasing trend and with increase of the wiggler frequency, the normalized frequencies decreased and a gap appeared between them. Furthermore, it is seen that with increase of the [Formula: see text]-parameter, the value of the kinetic energy as compared with the absence of the wiggler magnetic field increased. In fact, the electron energy gained is higher in the presence of a helical magnetostatic wiggler as compared with the absence of wiggler field. In addition, it is observed that due to effects of the wiggler field and SPW field, the electron traverses more distance in the propagation direction of the laser pulse.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fajans, J. « Bifilar helical wiggler magnet inductance ». Review of Scientific Instruments 60, no 9 (septembre 1989) : 3073–74. http://dx.doi.org/10.1063/1.1140609.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lin, A. T., et Chih-Chien Lin. « Peniotron amplifiers with helical wiggler magnetic fields ». IEEE Transactions on Plasma Science 24, no 3 (juin 1996) : 838–42. http://dx.doi.org/10.1109/27.533086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Meurdesoif, Y., J. Gardelle, T. Lefevre, J. L. Rullier et J. T. Donohue. « Characterization of a pulsed bifilar helical wiggler ». Journal of Applied Physics 87, no 9 (mai 2000) : 4499–506. http://dx.doi.org/10.1063/1.373096.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wang, Mei, S. Y. Park et J. L. Hirshfield. « Helical magnetized wiggler for synchrotron radiation laser ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 429, no 1-3 (juin 1999) : 419–23. http://dx.doi.org/10.1016/s0168-9002(99)00121-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nam, Soon-Kwon, et Ki-Bum Kim. « Chaotic behaviour in a realizable helical-wiggler field ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 507, no 1-2 (juillet 2003) : 69–73. http://dx.doi.org/10.1016/s0168-9002(03)00840-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Vetrovec, J. « Design of a high-field taperable helical wiggler ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 296, no 1-3 (octobre 1990) : 563–67. http://dx.doi.org/10.1016/0168-9002(90)91267-f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yeom, K. H., Jae Koo Lee et T. H. Chung. « Wiggler-free FEL with an intense helical beam ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 358, no 1-3 (avril 1995) : ABS52—ABS53. http://dx.doi.org/10.1016/0168-9002(94)01494-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Calvo, Miguel, et Otto Rendon. « Field configurations in Helical magnetic wigglers ». Review of Scientific Instruments 61, no 1 (janvier 1990) : 124–28. http://dx.doi.org/10.1063/1.1141887.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ohigashi, N., Y. Tsunawaki, M. Fujita, K. Imasaki, K. Mima et S. Nakai. « Construction of compact FEM using solenoid-induced helical wiggler ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 507, no 1-2 (juillet 2003) : 250–55. http://dx.doi.org/10.1016/s0168-9002(03)00872-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Nakao, N., K. Imasaki, M. Goto, N. Ohigashi, Y. Tsunawaki, A. Moon, A. Nagai, K. Mima, S. Nakai et C. Yamanaka. « Short wavelength FEL with helical micro-wiggler at FELI ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 445, no 1-3 (mai 2000) : 134–38. http://dx.doi.org/10.1016/s0168-9002(00)00046-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

HASANBEIGI, A., S. ABASIROSTAMI et H. MEHDIAN. « Kinetic description of a wiggler-pumped ion-channel free-electron laser by applying the Einstein coefficient technique ». Journal of Plasma Physics 79, no 5 (3 juin 2013) : 853–57. http://dx.doi.org/10.1017/s0022377813000561.

Texte intégral
Résumé :
AbstractA kinetic theory is used to investigate the theory of a free-electron laser with a helical wiggler and an ion channel based on the Einstein coefficient method. The laser gain in the low-gain regime is obtained for the case of a cold tenuous relativistic electron beam, where the beam plasma frequency is much less than the radiation frequency, propagating in this configuration. The resulting gain equation is analyzed numerically over a wide range of system parameters.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Davidson, Ronald C., George L. Johnston et Abhijit Sen. « Nonlinear traveling waves in a helical wiggler free-electron laser ». Physical Review A 34, no 1 (1 juillet 1986) : 392–400. http://dx.doi.org/10.1103/physreva.34.392.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Curtin, M. S., S. B. Segall et P. Diament. « Design of a large-useful-bore permanent-magnet helical wiggler ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 237, no 1-2 (juin 1985) : 395–400. http://dx.doi.org/10.1016/0168-9002(85)90377-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Sepehri Javan, Nasser. « Lasing conditions of a free electron laser with helical wiggler ». Physics of Plasmas 16, no 12 (décembre 2009) : 123109. http://dx.doi.org/10.1063/1.3277260.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Bourdier, A., et L. Michel-Lours. « Chaotic electron trajectories in a helical-wiggler free electron laser ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 341, no 1-3 (mars 1994) : 244–49. http://dx.doi.org/10.1016/0168-9002(94)90357-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Davies, John A., Ronald C. Davidson et George L. Johnston. « Compton and Raman free electron laser stability properties for a cold electron beam propagating through a helical magnetic wiggler ». Journal of Plasma Physics 33, no 3 (juin 1985) : 387–423. http://dx.doi.org/10.1017/s0022377800002580.

Texte intégral
Résumé :
This paper gives an extensive characterization of the range of validity of the Compton and Raman approximations to the exact free electron laser dispersion relation for a cold, relativistic electron beam propagating through a constantamplitude helical wiggler magnetic field. The electron beam is treated as infinite in transverse extent. Specific properties of the exact and approximate dispersion relations are investigated analytically and numerically. In particular, a detailed numerical analysis is carried out to determine the range of validity of the Compton approximation.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Bourdier, A., et L. Michel-Lours. « Identifying chaotic electron trajectories in a helical-wiggler free-electron laser ». Physical Review E 49, no 4 (1 avril 1994) : 3353–59. http://dx.doi.org/10.1103/physreve.49.3353.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Hartemann, F. V., G. P. Le Sage, D. B. McDermott et N. C. Luhmann. « Coherent synchrotron radiation in a cylindrical waveguide with a helical wiggler ». Physics of Plasmas 1, no 5 (mai 1994) : 1306–17. http://dx.doi.org/10.1063/1.870729.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Ohigashi, N., Y. Tsunawaki, M. Kiyochi, N. Nakao, M. Fujita, K. Imasaki, S. Nakai et K. Mima. « Development of solenoid-induced helical wiggler with four poles per period ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 429, no 1-3 (juin 1999) : 392–96. http://dx.doi.org/10.1016/s0168-9002(99)00113-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Diament, Paul. « Helical wiggler design with an array of uniform, small, permanent magnets ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 237, no 1-2 (juin 1985) : 381–88. http://dx.doi.org/10.1016/0168-9002(85)90375-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Hartemann, F., J. M. Buzzi et H. Lamain. « Novel adiabatic bifilar helical wiggler entrance for free‐electron laser applications ». Applied Physics Letters 53, no 8 (22 août 1988) : 631–33. http://dx.doi.org/10.1063/1.99836.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Shu, Xiaojian. « Electron velocity instability in combined helical wiggler and axial guide fields ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 341, no 1-3 (mars 1994) : ABS114—ABS115. http://dx.doi.org/10.1016/0168-9002(94)90474-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Sen Gupta, N. D. « The Dirac equation in an ideal helical wiggler with guide field ». Physics Letters A 152, no 9 (février 1991) : 453–57. http://dx.doi.org/10.1016/0375-9601(91)90553-k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Ashkenazy, J., et G. Bekefi. « Analysis and measurements of permanent magnet 'bifilar' helical wigglers ». IEEE Journal of Quantum Electronics 24, no 5 (mai 1988) : 812–19. http://dx.doi.org/10.1109/3.197.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Bekefi, G., et J. Ashkenazy. « Permanent magnet helical wiggler for free‐electron laser and cyclotron maser applications ». Applied Physics Letters 51, no 9 (31 août 1987) : 700–702. http://dx.doi.org/10.1063/1.98340.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Esmaeilzadeh, Mahdi, Mohammad S. Fallah et Joseph E. Willett. « Chaotic electron trajectories in a realizable helical wiggler with axial magnetic field ». Physics of Plasmas 14, no 1 (janvier 2007) : 013103. http://dx.doi.org/10.1063/1.2402498.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Shu, Xiaojian. « Harmonic resonance of electrons in combined helical wiggler and axial guide fields ». Physics of Plasmas 1, no 5 (mai 1994) : 1303–5. http://dx.doi.org/10.1063/1.870728.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Esmaeilzadeh, Mahdi, et Amin Taghavi. « Chaos in an ion-channel free-electron laser with realistic helical wiggler ». Physics of Plasmas 19, no 11 (novembre 2012) : 113101. http://dx.doi.org/10.1063/1.4764891.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Tsunawaki, Yoshiaki, Nobuhisa Ohigashi, Makoto Asakawa, Kazuo Imasaki et Kunioki Mima. « Magnetic field analysis of hybrid helical wiggler with multiple poles per period ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 507, no 1-2 (juillet 2003) : 166–69. http://dx.doi.org/10.1016/s0168-9002(03)00864-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Kalluri, D. K. « Conversion of a whistler wave into a controllable helical wiggler magnetic field ». Journal of Applied Physics 79, no 9 (1 mai 1996) : 6770–74. http://dx.doi.org/10.1063/1.361499.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Rhimi, M. N., R. El-Bahi et A. W. Cheikhrouhou. « Classical harmonic oscillator approach of a helical-wiggler free-electron laserwith axial guide field ». Canadian Journal of Physics 78, no 12 (1 décembre 2000) : 1069–85. http://dx.doi.org/10.1139/p00-083.

Texte intégral
Résumé :
Electron beam dynamics in a helical-wiggler free-electron laser (FEL) with a uniform axial guide magnetic field are studied using a three-dimensional Hamiltonian approach. The basic feature of the analysis is the definition of a rotational variable, [Formula: see text], that plays the primordial role in lowering to the half the dimension of the quadratic Hamiltonian as a system of two uncoupled oscillators with definite frequencies and amplitudes. It is through applying this variable in the vicinity of a fixed point that the Heisenberg picture of the dynamics of the particles comes to light, leading thus to the association of the steady-state ideal helical trajectories with arbitrary trajectories. The approach recognized the usual two constants of motion, one being the total energy while the other is the canonical axial angular momentum, Pz'. If the value of the latter is such that a fixed point exists, the Hamiltonian is expanded about the fixed point up to second order. The so-obtained oscillator characteristic frequencies allowed one to study the different modes of propagation and to identify, and then avoid the problematic operating conditions of the FEL concerned. On the other hand, the amplitudes of the oscillations, which do depend on the frequencies, are fortunately found to be constants of motion and then controlled by the boundary conditions (initial conditions). PACS Nos.: 52.40-w, 52.60+h, 42.55.Tb, 52.75Ms
Styles APA, Harvard, Vancouver, ISO, etc.
33

DAHM, R., et M. KIRCHBACH. « LINEAR WAVE EQUATIONS AND EFFECTIVE LAGRANGIANS FOR WIGNER SUPERMULTIPLETS ». International Journal of Modern Physics A 10, no 29 (20 novembre 1995) : 4225–39. http://dx.doi.org/10.1142/s0217751x95001960.

Texte intégral
Résumé :
The relevance of the contracted SU(4) group as a symmetry group of the pion-nucleon scattering amplitudes in the large Nc limit of QCD raises the problem of the construction of effective Lagrangians for SU(4) supermultiplets. In this study we suggest effective Lagrangians for self-conjugate representations of SU(4) in exploiting isomorphism between SO(6) and its universal covering SU(4). The model can be viewed as an extension of the linear σ model with SO(6) symmetry in place of SO(4) and generalizes the concept of the linear wave equations for particles with arbitrary spin. We show that the vector representation of SU(4) reduces on the SO(4) level to a complexified quaternion. Its real part gives rise to the standard linear σ model with a hedgehog configuration for the pion field, whereas the imaginary part describes vector meson degrees of freedom via purely transversal ρ mesons for which a helical field configuration is predicted. As a minimal model, baryonic states are suggested to appear as solitons of that quaternion.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Chu, K. R., et A. T. Lin. « Harmonic gyroresonance of electrons in combined helical wiggler and axial guide magnetic fields ». Physical Review Letters 67, no 23 (2 décembre 1991) : 3235–38. http://dx.doi.org/10.1103/physrevlett.67.3235.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Davidson, Ronald C. « Kinetic description of the sideband instability in a helical-wiggler free-electron laser ». Physics of Fluids 29, no 8 (1986) : 2689. http://dx.doi.org/10.1063/1.865511.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Mahdizadeh, Nader. « Efficiency enhancement in a two-stream free electron laser with a helical wiggler ». Optik 182 (avril 2019) : 1170–75. http://dx.doi.org/10.1016/j.ijleo.2019.01.112.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Takeda, H., S. Segall, P. Diament et A. Luccio. « Stable off-axis electron orbits and their radiation spectrum in a helical wiggler ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 237, no 1-2 (juin 1985) : 145–53. http://dx.doi.org/10.1016/0168-9002(85)90341-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Littlejohn, Robert G., Allan N. Kaufman et George L. Johnston. « Hamiltonian structure of particle motion in an ideal helical wiggler with guide field ». Physics Letters A 120, no 6 (mars 1987) : 291–92. http://dx.doi.org/10.1016/0375-9601(87)90673-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Bibo Feng, Zaitong Lu, Lifen Zhang et Mingchang Wang. « Investigation of Raman free-electron lasers with a bifilar helical small-period wiggler ». IEEE Journal of Quantum Electronics 30, no 11 (1994) : 2682–87. http://dx.doi.org/10.1109/3.333726.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

MEHDIAN, H., M. ALIMOHAMADI et A. HASANBEIGI. « Quantum statistical properties of free-electron laser with ion-channel guiding ». Journal of Plasma Physics 78, no 5 (12 avril 2012) : 537–44. http://dx.doi.org/10.1017/s0022377812000256.

Texte intégral
Résumé :
AbstractThe operation of the quantum free-electron lasers (QFELs) with a helical wiggler and in the presence of ion-channel guiding is considered. The quantum Hamiltonian of single particle has been derived in the Bambini-Renieri (BR) frame. Time dependent wave function and three constants of motion are obtained. The Raman-Nath equation (RNE) and its approximation solution have been calculated, and then the resulted solution has been employed to obtain the quantum gain, photon statistics parameter and squeezing parameter. A quantum approach has been used to get quantum statistical properties of the FEL and the photon gain formula for the small signal gain limit. It is found that the ion-channel guiding decreases the squeezing. Also, the conditions for positive (bunching) and negative (antibunching) gain have been studied numerically.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Singh, Jagnishan, Jyoti Rajput, Niti Kant et Sandeep Kumar. « Comparative study of inverse free-electron laser interaction based on helical and planar wiggler ». Optik 260 (juin 2022) : 169017. http://dx.doi.org/10.1016/j.ijleo.2022.169017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Freund, H., et A. Ganguly. « Electron orbits in free-electron lasers with helical wiggler and axial guide magnetic fields ». IEEE Journal of Quantum Electronics 21, no 7 (juillet 1985) : 1073–79. http://dx.doi.org/10.1109/jqe.1985.1072758.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Esmaeilzadeh, Mahdi, Hassan Mehdian, Joseph E. Willett et Yildirim M. Aktas. « Self-fields in a free-electron laser with helical wiggler and ion-channel guiding ». Physics of Plasmas 10, no 3 (mars 2003) : 905–7. http://dx.doi.org/10.1063/1.1540097.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

ESMAEILZADEH, MAHDI, JOSEPH E. WILLETT et LORI JO WILLETT. « Self-fields in a free-electron laser with helical wiggler and axial magnetic field ». Journal of Plasma Physics 72, no 01 (25 novembre 2005) : 59. http://dx.doi.org/10.1017/s0022377805003806.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Byun, C. G., et Y. Seo. « On the beam transport of a helical coaxial wiggler for a free-electron laser ». Current Applied Physics 5, no 6 (septembre 2005) : 595–98. http://dx.doi.org/10.1016/j.cap.2004.08.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Curtin, Mark S. « A 3-dimensional permanent-magnet helical wiggler model used to investigate off-axis orbits ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 250, no 1-2 (septembre 1986) : 110–14. http://dx.doi.org/10.1016/0168-9002(86)90869-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

WILLETT, J. E., B. BOLON, U. H. HWANG et Y. AKTAS. « Re-examination of the one-dimensional theory of a Raman free-electron laser ». Journal of Plasma Physics 66, no 5 (novembre 2001) : 301–13. http://dx.doi.org/10.1017/s0022377801001519.

Texte intégral
Résumé :
A new one-dimensional analysis of the collective interaction in a free-electron laser with combined helical wiggler and uniform axial magnetic fields is presented. Maxwell's curl relations and the cold-fluid equations are employed, with the appropriate form of solution for right and left circularly polarized electromagnetic waves and space-charge waves. A set of three linear homogeneous algebraic equations for the electric field amplitudes of the three propagating waves is derived. This set may be employed to obtain the general dispersion relation in the form of a tenth-degree polynomial equation. With the left circular wave assumed to be nonresonant, the dispersion relation reduces to a seventh-degree polynomial equation corresponding to four space-charge modes and three right circular modes. The results of a numerical study of the spatial growth rate and radiation frequency are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Davies, John A., Ronald C. Davidson et George L. Johnston. « Compton and Raman free electron laser stability properties for a warm electron beam propagating through a helical magnetic wiggler ». Journal of Plasma Physics 37, no 2 (avril 1987) : 255–98. http://dx.doi.org/10.1017/s0022377800012162.

Texte intégral
Résumé :
This paper gives an extensive analytical and numerical characterization of the growth-rate curves (imaginary frequency versus wavenumber) derived from the free electron laser dispersion relation for a warm relativistic electron beam propagating through a constant-amplitude helical magnetic wiggler field. The electron beam is treated as infinite in transverse extent. A detailed mathematical analysis is given of the exact dispersion relation and its Compton approximation for the case of a water-bag equilibrium distribution function (uniform distribution in axial momentum pz). Applicability of the water-bag results to the case of a Gaussian equilibrium distribution in pz is tested numerically. One result of the water-bag analysis is a set of validity conditions for the Compton approximation. Numerical and analytical results indicate that these conditions are applicable to the Gaussian case far outside the parameter range where the individual water-bag and corresponding Gaussian growth rate curves agree.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Davidson, Ronald C., et Jonathan S. Wurtele. « Influence of untrapped electrons on the sideband instability in a helical wiggler free electron laser ». Physics of Fluids 30, no 9 (septembre 1987) : 2825–38. http://dx.doi.org/10.1063/1.866047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Mirzanejhad, S. « Injection of electrons into the three-dimensional helical wiggler field in a free electron laser ». Physics of Plasmas 10, no 3 (mars 2003) : 845–48. http://dx.doi.org/10.1063/1.1541024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie