Littérature scientifique sur le sujet « HECW1 »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « HECW1 ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "HECW1"

1

Erdman, Vera V., Denis D. Karimov, Ilsia A. Tuktarova, Yanina R. Timasheva, Timur R. Nasibullin et Gulnaz F. Korytina. « Alu Deletions in LAMA2 and CDH4 Genes Are Key Components of Polygenic Predictors of Longevity ». International Journal of Molecular Sciences 23, no 21 (4 novembre 2022) : 13492. http://dx.doi.org/10.3390/ijms232113492.

Texte intégral
Résumé :
Longevity is a unique human phenomenon and a highly stable trait, characterized by polygenicity. The longevity phenotype occurs due to the ability to successfully withstand the age-related genomic instability triggered by Alu elements. The purpose of our cross-sectional study was to evaluate the combined contribution of ACE*Ya5ACE, CDH4*Yb8NBC516, COL13A1*Ya5ac1986, HECW1*Ya5NBC182, LAMA2*Ya5-MLS19, PLAT*TPA25, PKHD1L1*Yb8AC702, SEMA6A*Yb8NBC597, STK38L*Ya5ac2145 and TEAD1*Ya5ac2013 Alu elements to longevity. The study group included 2054 unrelated individuals aged from 18 to 113 years who are ethnic Tatars from Russia. We analyzed the dynamics of the allele and genotype frequencies of the studied Alu polymorphic loci in the age groups of young (18–44 years old), middle-aged (45–59 years old), elderly (60–74 years old), old seniors (75–89 years old) and long-livers (90–113 years old). Most significant changes in allele and genotype frequencies were observed between the long-livers and other groups. The search for polygenic predictors of longevity was performed using the APSampler program. Attaining longevity was associated with the combinations LAMA2*ID + CDH4*D (OR = 2.23, PBonf = 1.90 × 10−2) and CDH4*DD + LAMA2*ID + HECW1*D (OR = 4.58, PBonf = 9.00 × 10−3) among persons aged between 18 and 89 years, LAMA2*ID + CDH4*D + SEMA6A*I for individuals below 75 years of age (OR = 3.13, PBonf = 2.00 × 10−2), LAMA2*ID + HECW1*I for elderly people aged 60 and older (OR = 3.13, PBonf = 2.00 × 10−2) and CDH4*DD + LAMA2*D + HECW1*D (OR = 4.21, PBonf = 2.60 × 10−2) and CDH4*DD + LAMA2*D + ACE*I (OR = 3.68, PBonf = 1.90 × 10−2) among old seniors (75–89 years old). The key elements of combinations associated with longevity were the deletion alleles of CDH4 and LAMA2 genes. Our results point to the significance for human longevity of the Alu polymorphic loci in CDH4, LAMA2, HECW1, SEMA6A and ACE genes, involved in the integration systems.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Haouari, Shanez, Christian Robert Andres, Debora Lanznaster, Sylviane Marouillat, Céline Brulard, Audrey Dangoumau, Devina Ung et al. « Study of Ubiquitin Pathway Genes in a French Population with Amyotrophic Lateral Sclerosis : Focus on HECW1 Encoding the E3 Ligase NEDL1 ». International Journal of Molecular Sciences 24, no 2 (9 janvier 2023) : 1268. http://dx.doi.org/10.3390/ijms24021268.

Texte intégral
Résumé :
The ubiquitin pathway, one of the main actors regulating cell signaling processes and cellular protein homeostasis, is directly involved in the pathophysiology of amyotrophic lateral sclerosis (ALS). We first analyzed, by a next-generation sequencing (NGS) strategy, a series of genes of the ubiquitin pathway in two cohorts of familial and sporadic ALS patients comprising 176 ALS patients. We identified several pathogenic variants in different genes of this ubiquitin pathway already described in ALS, such as FUS, CCNF and UBQLN2. Other variants of interest were discovered in new genes studied in this disease, in particular in the HECW1 gene. We have shown that the HECT E3 ligase called NEDL1, encoded by the HECW1 gene, is expressed in neurons, mainly in their somas. Its overexpression is associated with increased cell death in vitro and, very interestingly, with the cytoplasmic mislocalization of TDP-43, a major protein involved in ALS. These results give new support for the role of the ubiquitin pathway in ALS, and suggest further studies of the HECW1 gene and its protein NEDL1 in the pathophysiology of ALS.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Liu, Jia, Su Dong, Lian Li, Heather Wang, Jing Zhao et Yutong Zhao. « The E3 ubiquitin ligase HECW1 targets thyroid transcription factor 1 (TTF1/NKX2.1) for its degradation in the ubiquitin-proteasome system ». Cellular Signalling 58 (juin 2019) : 91–98. http://dx.doi.org/10.1016/j.cellsig.2019.03.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Liu, Jia, Su Dong, Heather Wang, Lian Li, Qinmao Ye, Yanhui Li, Jiaxing Miao, Sissy Jhiang, Jing Zhao et Yutong Zhao. « Two distinct E3 ligases, SCF FBXL19 and HECW1, degrade thyroid transcription factor 1 in normal thyroid epithelial and follicular thyroid carcinoma cells, respectively ». FASEB Journal 33, no 9 (25 juin 2019) : 10538–50. http://dx.doi.org/10.1096/fj.201900415r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chen, Yumay, Daniel J. Riley, Lei Zheng, Phang-Lang Chen et Wen-Hwa Lee. « Phosphorylation of the Mitotic Regulator Protein Hec1 by Nek2 Kinase Is Essential for Faithful Chromosome Segregation ». Journal of Biological Chemistry 277, no 51 (16 octobre 2002) : 49408–16. http://dx.doi.org/10.1074/jbc.m207069200.

Texte intégral
Résumé :
Hec1 (highlyexpressed incancer) plays essential roles in chromosome segregation by interacting through its coiled-coil domains with several proteins that modulate the G2/M phase. Hec1 localizes to kinetochores, and its inactivation either by genetic deletion or antibody neutralization leads to severe and lethal chromosomal segregation errors, indicating that Hec1 plays a critical role in chromosome segregation. The mechanisms by which Hec1 is regulated, however, are not known. Here we show that human Hec1 is a serine phosphoprotein and that it binds specifically to the mitotic regulatory kinase Nek2 during G2/M. Nek2 phosphorylates Hec1 on serine residue 165, bothin vitroandin vivo. Yeast cells are viable without scNek2/Kin3, a close structural homolog of Nek2 that binds to both human and yeast Hec1. When the same yeasts carry an scNek2/Kin3 (D55G) or Nek2 (E38G) mutation to mimic a similar temperature-sensitivenimamutation inAspergillus, their growth is arrested at the nonpermissive temperature, because the scNek2/Kin3 (D55G) mutant binds to Hec1 but fails to phosphorylate it. Whereas wild-type human Hec1 rescues lethality resulting from deletion of Hec1 inSaccharomyces cerevesiae, a human Hec1 mutant or yeast Hec1 mutant changing Ser165to Ala or yeast Hec1 mutant changing Ser201to Ala does not. Mutations changing the same Ser residues to Glu, to mimic the negative charge created by phosphorylation, partially rescue lethality but result in a high incidence of errors in chromosomal segregation. These results suggest that cell cycle-regulated serine phosphorylation of Hec1 by Nek2 is essential for faithful chromosome segregation.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wu, Guikai, Randy Wei, Eric Cheng, Bryan Ngo et Wen-Hwa Lee. « Hec1 Contributes to Mitotic Centrosomal Microtubule Growth for Proper Spindle Assembly through Interaction with Hice1 ». Molecular Biology of the Cell 20, no 22 (15 novembre 2009) : 4686–95. http://dx.doi.org/10.1091/mbc.e08-11-1123.

Texte intégral
Résumé :
Previous studies have stipulated Hec1 as a conserved kinetochore component critical for mitotic control in part by directly binding to kinetochore fibers of the mitotic spindle and by recruiting spindle assembly checkpoint proteins Mad1 and Mad2. Hec1 has also been reported to localize to centrosomes, but its function there has yet to be elucidated. Here, we show that Hec1 specifically colocalizes with Hice1, a previously characterized centrosomal microtubule-binding protein, at the spindle pole region during mitosis. In addition, the C-terminal region of Hec1 directly binds to the coiled-coil domain 1 of Hice1. Depletion of Hice1 by small interfering RNA (siRNA) reduced levels of Hec1 in the cell, preferentially at centrosomes and spindle pole vicinity. Reduction of de novo microtubule nucleation from mitotic centrosomes can be observed in cells treated with Hec1 or Hice1 siRNA. Consistently, neutralization of Hec1 or Hice1 by specific antibodies impaired microtubule aster formation from purified mitotic centrosomes in vitro. Last, disruption of the Hec1/Hice1 interaction by overexpressing Hice1ΔCoil1, a mutant defective in Hec1 interaction, elicited abnormal spindle morphology often detected in Hec1 and Hice1 deficient cells. Together, the results suggest that Hec1, through cooperation with Hice1, contributes to centrosome-directed microtubule growth to facilitate establishing a proper mitotic spindle.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sundin, Lynsie J. R., Geoffrey J. Guimaraes et Jennifer G. DeLuca. « The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore–microtubule attachment in mitosis ». Molecular Biology of the Cell 22, no 6 (15 mars 2011) : 759–68. http://dx.doi.org/10.1091/mbc.e10-08-0671.

Texte intégral
Résumé :
Successful mitosis requires that kinetochores stably attach to the plus ends of spindle microtubules. Central to generating these attachments is the NDC80 complex, made of the four proteins Spc24, Spc25, Nuf2, and Hec1/Ndc80. Structural studies have revealed that portions of both Hec1 and Nuf2 N termini fold into calponin homology (CH) domains, which are known to mediate microtubule binding in certain proteins. Hec1 also contains a basic, positively charged stretch of amino acids that precedes its CH domain, referred to as the “tail.” Here, using a gene silence and rescue approach in HeLa cells, we show that the CH domain of Hec1, the CH domain of Nuf2, and the Hec1 tail each contributes to kinetochore–microtubule attachment in distinct ways. The most severe defects in kinetochore–microtubule attachment were observed in cells rescued with a Hec1 CH domain mutant, followed by those rescued with a Hec1 tail domain mutant. Cells rescued with Nuf2 CH domain mutants, however, generated stable kinetochore–microtubule attachments but failed to generate wild-type interkinetochore tension and failed to enter anaphase in a timely manner. These data suggest that the CH and tail domains of Hec1 generate essential contacts between kinetochores and microtubules in cells, whereas the Nuf2 CH domain does not.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wei, Randy, Bryan Ngo, Guikai Wu et Wen-Hwa Lee. « Phosphorylation of the Ndc80 complex protein, HEC1, by Nek2 kinase modulates chromosome alignment and signaling of the spindle assembly checkpoint ». Molecular Biology of the Cell 22, no 19 (octobre 2011) : 3584–94. http://dx.doi.org/10.1091/mbc.e11-01-0012.

Texte intégral
Résumé :
The spindle assemble checkpoint (SAC) is critical for accurate chromosome segregation. Hec1 contributes to chromosome segregation in part by mediating SAC signaling and chromosome alignment. However, the molecular mechanism by which Hec1 modulates checkpoint signaling and alignment remains poorly understood. We found that Hec1 serine 165 (S165) is preferentially phosphorylated at kinetochores. Phosphorylated Hec1 serine 165 (pS165) specifically localized to kinetochores of misaligned chromosomes, showing a spatiotemporal distribution characteristic of SAC molecules. Expressing an RNA interference (RNAi)-resistant S165A mutant in Hec1-depleted cells permitted normal progression to metaphase, but accelerated the metaphase-to-anaphase transition. The S165A cells were defective in Mad1 and Mad2 localization to kinetochores, regardless of attachment status. These cells often entered anaphase with lagging chromosomes and elicited increased segregation errors and cell death. In contrast, expressing S165E mutant in Hec1-depleted cells triggered defective chromosome alignment and severe mitotic arrest associated with increased Mad1/Mad2 signals at prometaphase kinetochores. A small portion of S165E cells eventually bypassed the SAC but showed severe segregation errors. Nek2 is the primary kinase responsible for kinetochore pS165, while PP1 phosphatase may dephosphorylate pS165 during SAC silencing. Taken together, these results suggest that modifications of Hec1 S165 serve as an important mechanism in modulating SAC signaling and chromosome alignment.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tooley, John G., Stephanie A. Miller et P. Todd Stukenberg. « The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement ». Molecular Biology of the Cell 22, no 8 (15 avril 2011) : 1217–26. http://dx.doi.org/10.1091/mbc.e10-07-0626.

Texte intégral
Résumé :
In kinetochores, the Ndc80 complex couples the energy in a depolymerizing microtubule to perform the work of moving chromosomes. The complex directly binds microtubules using an unstructured, positively charged N-terminal tail located on Hec1/Ndc80. Hec1/Ndc80 also contains a calponin homology domain (CHD) that increases its affinity for microtubules in vitro, yet whether it is required in cells and how the tail and CHD work together are critical unanswered questions. Human kinetochores containing Hec1/Ndc80 with point mutations in the CHD fail to align chromosomes or form productive microtubule attachments. Kinetochore architecture and spindle checkpoint protein recruitment are unaffected in these mutants, and the loss of CHD function cannot be rescued by removing Aurora B sites from the tail. The interaction between the Hec1/Ndc80 CHD and a microtubule is facilitated by positively charged amino acids on two separate regions of the CHD, and both are required for kinetochores to make stable attachments to microtubules. Chromosome congression in cells also requires positive charge on the Hec1 tail to facilitate microtubule contact. In vitro binding data suggest that charge on the tail regulates attachment by directly increasing microtubule affinity as well as driving cooperative binding of the CHD. These data argue that in vertebrates there is a tripartite attachment point facilitating the interaction between Hec1/Ndc80 and microtubules. We discuss how such a complex microtubule-binding interface may facilitate the coupling of depolymerization to chromosome movement.
Styles APA, Harvard, Vancouver, ISO, etc.
10

DeLuca, Jennifer G., Yimin Dong, Polla Hergert, Joshua Strauss, Jennifer M. Hickey, E. D. Salmon et Bruce F. McEwen. « Hec1 and Nuf2 Are Core Components of the Kinetochore Outer Plate Essential for Organizing Microtubule Attachment Sites ». Molecular Biology of the Cell 16, no 2 (février 2005) : 519–31. http://dx.doi.org/10.1091/mbc.e04-09-0852.

Texte intégral
Résumé :
A major goal in the study of vertebrate mitosis is to identify proteins that create the kinetochore-microtubule attachment site. Attachment sites within the kinetochore outer plate generate microtubule dependent forces for chromosome movement and regulate spindle checkpoint protein assembly at the kinetochore. The Ndc80 complex, comprised of Ndc80 (Hec1), Nuf2, Spc24, and Spc25, is essential for metaphase chromosome alignment and anaphase chromosome segregation. It has also been suggested to have roles in kinetochore microtubule formation, production of kinetochore tension, and the spindle checkpoint. Here we show that Nuf2 and Hec1 localize throughout the outer plate, and not the corona, of the vertebrate kinetochore. They are part of a stable “core” region whose assembly dynamics are distinct from other outer domain spindle checkpoint and motor proteins. Furthermore, Nuf2 and Hec1 are required for formation and/or maintenance of the outer plate structure itself. Fluorescence light microscopy, live cell imaging, and electron microscopy provide quantitative data demonstrating that Nuf2 and Hec1 are essential for normal kinetochore microtubule attachment. Our results indicate that Nuf2 and Hec1 are required for organization of stable microtubule plus-end binding sites in the outer plate that are needed for the sustained poleward forces required for biorientation at kinetochores.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "HECW1"

1

SALA, SIMONA. « THE E3 UBIQUITIN LIGASE HECW1 IN NEURONAL HOMEOSTASIS ». Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/883944.

Texte intégral
Résumé :
Ubiquitination is one of the most abundant and versatile post-translation modifications in eukaryotes that affects many biological processes by modifying protein activity, interactions, localization and stability of substrates. E3 ligases have a key function in the process, acting as molecular ubiquitin-substrate matchmakers and providing specificity to the reaction. In this thesis, we aimed at characterizing the physiological and pathological functions of the human HECW1, a poorly studied E3 ligase which belongs to the NEDD4 family. HECW1 is preferentially expressed in the central nervous system (CNS) and it has been linked to neurodegeneration, in particular to the familial form of Amyotrophic Lateral Sclerosis (fALS). The Drosophila orthologue Hecw, that we recently identified and functionally characterized, is similarly enriched in the CNS and is involved in the dynamic regulation of RNPs required for neuronal health. The Hecw/HECW1 interactome is enriched in proteins involved in the autophagy/endolysosomal pathway and RNPs dynamics, whose dysfunction promote neurodegenerative diseases. Together these data suggest a protective role of HECW1 in neuronal homeostasis. To investigate into HECW1 physiological and disease-relevant neuronal function, we optimized a protocol to directly differentiate neurons from human iPSCs and we generated HECW1-KO iPSCs. We found that HECW1 expression in neurons is upregulated during differentiation and downregulated with aging, a typical behavior of components of the ubiquitin proteasome and autophagy pathways. Unbiased proteomic analysis showed deregulation of proteins involved in vesicle traffic and kinase activity in HECW-KO neurons. Targeted immunofluorescence, morphological and EM analysis revealed an accumulation of enlarged organelles positive for the autophagic and endo-lysosomal marker LAMP1 and of endolysosomal/autophagic compartments structures along filaments and in distal axons of HECW1-depleted neurons. Moreover, distal tips of HECW1-KO neurons showed the accumulation of abnormal, static WGA-aggregates, indicating an impairment in endosomal traffic. A second category of enriched HECW1 interactors is related to RNA metabolism. Co-immunoprecipitation analysis confirmed HECW1 interaction with the SG protein FMRP and the PB component EDC3. We also measured an increase number of constitutive PBs in HECW1-depleted neurons, suggesting a possible regulatory role of HECW1 in constitutive PB formation or clearance. The two phenotypes observed in HECW1-depleted neurons could be functionally linked, considering the involvement of autophagy in the clearance of persistent RNPs arising from chronic stress or disease mutations. Taken together, our results have uncovered an involvement of HECW1 in the regulation of the autophagy/endolysosomal pathway in neurons and a possible contribution in controlling the homeostasis of ribonucleoprotein particles. Future studies in motor neurons would help to understand the implications of these results for ASL, a disease where dysregulation of RNA metabolism, cytoplasmic mislocalization of RNA binding proteins and dysfunction in RNP dynamics, along with autophagy impairments appear to be at the basis of the pathogenesis.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "HECW1"

1

Goldblatt, Erin M., Eva Lee et Wen-Hwa Lee. « Mitotic Regulator Hec1 as a Potential Target for Cancer Therapy ». Dans Recent Advances in Cancer Research and Therapy, 97–111. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-397833-2.00004-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie