Articles de revues sur le sujet « Heat transfer enhancement, Homogenization »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Heat transfer enhancement, Homogenization.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Heat transfer enhancement, Homogenization ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Nciri, Rached, Yahya Ali Rothan, Faouzi Nasri et Chaouki Ali. « Fe3O4-Water Nanofluid Free Convection within an Inclined 2D Rectangular Enclosure Heated by Solar Energy Using Finned Absorber Plate ». Applied Sciences 11, no 2 (6 janvier 2021) : 486. http://dx.doi.org/10.3390/app11020486.

Texte intégral
Résumé :
This work investigates a hydrodynamic problem involving the Fe3O4-Water nanofluid. The novelty of this investigation lies in the fact that the nanofluid free convection is evaluated within a specific rectangular enclosure having a finned absorber plate as the top wall, heated by solar energy. The fins below the absorber plate permit to enhance heat transfer towards the nanofluid. A numerical simulation is carried out in order to predict the influence of Rayleigh number, nanofluid layer position, enclosure inclination angle, and absorber plate fins height on the nanofluid flow (in terms of streamlines and velocity magnitude) and heat transfer (in terms of temperature and Nusselt number divided by a certain thermal conductivity ratio). Numerical results show a nanofluid buoyancy enhancement and a temperature distribution homogenization, when the Rayleigh number increases, all the more important and pushed to the right area of the enclosure, as the inclination angle of the enclosure is higher. For relatively low fin heights, the nanofluid buoyancy enhancement is all the more important and pushed to the right area of the enclosure as the inclination angle is high. As the fin height increases, the temperature distribution becomes more homogenous.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Asianuaba, Ifeoma B. « Heat Transfer Augmentation ». European Journal of Engineering Research and Science 5, no 4 (25 avril 2020) : 475–78. http://dx.doi.org/10.24018/ejers.2020.5.4.1869.

Texte intégral
Résumé :
This article presents a brief review of various methodologies applied for heat transfer enhancement in laminar flow convection regime. Experimental setup for laminar flow convection heat transfer enhancement using insertions has been explained along with the associated results. Nusselt’s number is found to be a key parameter for investigatigation in order to perceive the enhancement in heat transfer. Similarly, the magnetohydrodynamic mixed convection heat transfer enhancement technique has also been explored. The results of isotherms and fluid flow parameters are discussed which directly affect the heat transfer coefficient. This review article complements the literature in related field and thus will be helpful in order to carry out further experiments in heat transfer enhancement in future.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Asianuaba, Ifeoma B. « Heat Transfer Augmentation ». European Journal of Engineering and Technology Research 5, no 4 (25 avril 2020) : 475–78. http://dx.doi.org/10.24018/ejeng.2020.5.4.1869.

Texte intégral
Résumé :
This article presents a brief review of various methodologies applied for heat transfer enhancement in laminar flow convection regime. Experimental setup for laminar flow convection heat transfer enhancement using insertions has been explained along with the associated results. Nusselt’s number is found to be a key parameter for investigatigation in order to perceive the enhancement in heat transfer. Similarly, the magnetohydrodynamic mixed convection heat transfer enhancement technique has also been explored. The results of isotherms and fluid flow parameters are discussed which directly affect the heat transfer coefficient. This review article complements the literature in related field and thus will be helpful in order to carry out further experiments in heat transfer enhancement in future.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gorshenin, A. S., J. I. Rakhimova et N. P. Krasnova. « Conjugated Heat Exchange in Heat Treatment of Aluminum Ingots Simulation ». Journal of Physics : Conference Series 2096, no 1 (1 novembre 2021) : 012053. http://dx.doi.org/10.1088/1742-6596/2096/1/012053.

Texte intégral
Résumé :
Abstract Casting aluminum to obtain semi-finished products - round ingots, due to uneven cooling in the mold, leads to various defects that affect further machining. To eliminate such defects, heat treatment is carried out - homogenization annealing. One of the homogenization important stages is the cooling of the ingots after heating at a rate that does not lead to the ingot quenching. The cooling medium is air. Knowing the conditions of heat exchange between the cooling air and the high-temperature aluminum billet makes it possible to obtain the ingot’s necessary physical and mechanical properties. The article describes the developed mathematical model of conjugate heat transfer during homogenization annealing of aluminum ingot. It allows analytically calculating the temperature of the ingots depending on the cooling time. To verify the data obtained by the mathematical model, the conjugate heat transfer in the ANSYS program was simulated.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Habibi, Zakaria. « Homogenization of a Conductive-Radiative Heat Transfer Problem ». ESAIM : Proceedings 35 (mars 2012) : 228–33. http://dx.doi.org/10.1051/proc/201235019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kim Hang, Le Nguyen. « Homogenization of Heat Transfer Process in Composite Materials ». Journal of Elliptic and Parabolic Equations 1, no 1 (avril 2015) : 175–88. http://dx.doi.org/10.1007/bf03377374.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

AYUB, ZAHID H. « Ammonia Refrigeration Heat Transfer Enhancement ». Heat Transfer Engineering 25, no 5 (juillet 2004) : 4–5. http://dx.doi.org/10.1080/01457630490443514.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ziegler, F., et G. Grossman. « Heat-transfer enhancement by additives ». International Journal of Refrigeration 19, no 5 (juin 1996) : 301–9. http://dx.doi.org/10.1016/s0140-7007(96)00032-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Xuan, Yimin, et Qiang Li. « Heat transfer enhancement of nanofluids ». International Journal of Heat and Fluid Flow 21, no 1 (février 2000) : 58–64. http://dx.doi.org/10.1016/s0142-727x(99)00067-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hsieh, Shou-Shing, Hao-Hsiang Liu et Yi-Fan Yeh. « Nanofluids spray heat transfer enhancement ». International Journal of Heat and Mass Transfer 94 (mars 2016) : 104–18. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.11.061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Rangasamy Mahendren, Sharan Raj, Hélène Welemane, Olivier Dalverny et Amèvi Tongne. « Steady-state heat transfer in microcracked media ». Mechanics & ; Industry 21, no 5 (2020) : 519. http://dx.doi.org/10.1051/meca/2020034.

Texte intégral
Résumé :
Material behaviour is often affected by the heterogeneities existing at the microscopic level. Especially the presence of cracks, voids, etc collectively known as defects, can play a major role in their overall response. Homogenization can be used to study the influence of these heterogeneities and also to estimate the effective properties of a given material. Several research works have been dedicated to determining the elastic behaviour of microcracked media. Yet, thermal properties are not investigated as much. Moreover, the question of unilateral effect (opening/closing of cracks) still remains an important issue. So, this paper aims to provide the effective thermal conductivity of 2D microcracked media with arbitrarily orientated cracks, either open or closed. With the help of Eshelby-like approach, homogenization schemes (dilute and Mori-Tanaka) and bounds (Ponte Castañeda-Willis) are developed to provide the closed-form expressions. In addition, these results are compared to numerical simulations performed based on finite element modelling.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Allaire, Grégoire, et Karima El Ganaoui. « Homogenization of a Conductive and Radiative Heat Transfer Problem ». Multiscale Modeling & ; Simulation 7, no 3 (janvier 2009) : 1148–70. http://dx.doi.org/10.1137/080714737.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Hummel, Hans-Karl. « Homogenization for heat transfer in polycrystals with interfacial resistances ». Applicable Analysis 75, no 3-4 (août 2000) : 403–24. http://dx.doi.org/10.1080/00036810008840857.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Kamiński, Marcin. « Homogenization technique for transient heat transfer in unidirectional composites ». Communications in Numerical Methods in Engineering 19, no 7 (3 mars 2003) : 503–12. http://dx.doi.org/10.1002/cnm.608.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Dreitser, Guenrikh A. « Efficiency of Heat Transfer Enhancement in Heat Exchangers ». Heat Transfer Research 32, no 7-8 (2001) : 9. http://dx.doi.org/10.1615/heattransres.v32.i7-8.130.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Krishna, Maddali, M. Swamy, G. Manjunath, N. Rao, Battula Rao et P. Murthy. « Heat Transfer Enhancement in Corrugated Plate Heat Exchanger ». British Journal of Applied Science & ; Technology 18, no 3 (10 janvier 2016) : 1–14. http://dx.doi.org/10.9734/bjast/2016/28438.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Chatys, Rafał, Milan Malcho et Łukasz J. Orman. « HEAT TRANSFER ENHANCEMENT IN PHASE-CHANGE HEAT EXCHANGERS ». Aviation 18, no 1 (3 avril 2014) : 40–43. http://dx.doi.org/10.3846/16487788.2014.865930.

Texte intégral
Résumé :
The paper presents the results of boiling heat transfer enhancement due to the application of additional mesh on the heat exchanger surface. The copper mesh of porosity of 75% was sintered to the copper heater producing strong bonds between the elements. The results indicate a possibility of significant improvement of heat transfer conditions in comparison to the smooth surface. The heat flux was found to be almost six times higher for the same superheat if the mesh structure was applied. Distilled water and ethanol were the working fluids. The investigations were performed under atmospheric pressure.
Styles APA, Harvard, Vancouver, ISO, etc.
18

X. X. Zhu, M. Zanfir, J. Klemes. « Heat Transfer Enhancement for Heat Exchanger Network Retrofit ». Heat Transfer Engineering 21, no 2 (mars 2000) : 7–18. http://dx.doi.org/10.1080/014576300270988.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Apmann, Kevin, Ryan Fulmer, Branden Scherer, Sawyer Good, Jake Wohld et Saeid Vafaei. « Nanofluid Heat Transfer : Enhancement of the Heat Transfer Coefficient inside Microchannels ». Nanomaterials 12, no 4 (11 février 2022) : 615. http://dx.doi.org/10.3390/nano12040615.

Texte intégral
Résumé :
The purpose of this paper is to investigate the effects of a connector between two microchannels, for the first time. A brief literature review is provided to offer a better understanding on the impacts of concentration and the characteristics of nanoparticles on thermal conductivity, viscosity, and, consequently, the heat transfer coefficient inside the microchannels. The given literature review aims to help engineer nanofluids to enhance the heat transfer coefficient inside the microchannels. In this research, Fe3O4 nanoparticles were introduced into the base liquid to enhance the heat transfer coefficient inside the microchannels and to provide a better understanding of the impact of the connector between two microchannels. It was observed that the connector has a significant impact on enhancing the heat transfer coefficient inside the second microchannel, by increasing the level of randomness of molecules and particles prior to entering the second channel. The connector would act to refresh the memory of the fluid before entering the second channel, and as a result, the heat transfer coefficient in the second channel would start at a maximum value. Therefore, the overall heat transfer coefficient in both microchannels would increase for given conditions. The impacts of the Reynolds number and introducing nanoparticles in the base liquid on effects induced by the connector were investigated, suggesting that both factors play a significant role on the connector’s impact on the heat transfer coefficient.
Styles APA, Harvard, Vancouver, ISO, etc.
20

BERGLES, ARTHUR E. « Heat Transfer Enhancement—The Maturing of Second-Generation Heat Transfer Technology ». Heat Transfer Engineering 18, no 1 (janvier 1997) : 47–55. http://dx.doi.org/10.1080/01457639708939889.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

He, Zeqing, Yingli Shi, Yuqing Shen, Zhigang Shen, Taihua Zhang et Zhao Zhao. « Transient Heat Conduction in the Orthotropic Model with Rectangular Heat Source ». Micromachines 13, no 8 (16 août 2022) : 1324. http://dx.doi.org/10.3390/mi13081324.

Texte intégral
Résumé :
Epidermal electronic systems (EESs) are a representative achievement for utilizing the full advantages of ultra-thin, stretchable and conformal attachment of flexible electronics, and are extremely suitable for integration with human physiological systems, especially in medical hyperthermia. The stretchable heater with stable electrical characteristics and a uniform temperature field is an irreplaceable core component. The inorganic stretchable heater has the advantage of maintaining stable electrical characteristics under tensile deformation. However, the space between the patterned electrodes that provides tensile properties causes uneven distribution of the temperature field. Aiming at improving the temperature distribution uniformity of stretchable thermotherapy electrodes, an orthotropic heat transfer substrate for stretchable heaters is proposed in this paper. An analytical model for transient heat conduction of stretchable rectangular heaters based on orthotropic transfer characteristics is established, which is validated by finite element analysis (FEA). The homogenization effect of orthotropic heat transfer characteristics on temperature distribution and its evolutionary relationship with time are investigated based on this model. This study will provide beneficial help for the temperature distribution homogenization design of stretchable heaters and the exploration of its transient heat transfer mechanism.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Bergles, A. E. « Some Perspectives on Enhanced Heat Transfer—Second-Generation Heat Transfer Technology ». Journal of Heat Transfer 110, no 4b (1 novembre 1988) : 1082–96. http://dx.doi.org/10.1115/1.3250612.

Texte intégral
Résumé :
During the past twenty-five years, heat transfer enhancement has grown at a rapid rate to the point where it can be regarded as a major field of endeavor, a second-generation heat transfer technology. After some historical background, mention of the driving trends, and a review of the various convective enhancement techniques, four areas of major contemporary interest are discussed: structured surfaces for shellside boiling, rough surfaces in tubes, offset strip fins, and microfin tubes for refrigerant evaporators and condensers. The review concludes with developments in the major areas of application.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Yang Bo, 杨波, 王姣 Wang Jiao et 刘军 Liu Jun. « Heat transfer enhancement of carbon nanofluids ». High Power Laser and Particle Beams 26, no 5 (2014) : 51003. http://dx.doi.org/10.3788/hplpb20142605.51003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Gan Jia Gui, Nicolette, Cameron Stanley, Nam-Trung Nguyen et Gary Rosengarten. « Ferrofluidic plug flow heat transfer enhancement ». International Journal of Computational Methods and Experimental Measurements 6, no 2 (1 novembre 2017) : 291–302. http://dx.doi.org/10.2495/cmem-v6-n2-291-302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Suman, Balram, et Raffaele Savino. « Capillary Flow-Driven Heat Transfer Enhancement ». Journal of Thermophysics and Heat Transfer 25, no 4 (octobre 2011) : 553–60. http://dx.doi.org/10.2514/1.t3747.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Abdulhadi Ethbayah, Waleed. « HEAT TRANSFER ENHANCEMENT USING HELICAL PIPES ». International Journal of Advanced Research 9, no 12 (31 décembre 2021) : 676–85. http://dx.doi.org/10.21474/ijar01/13959.

Texte intégral
Résumé :
The enhancement of laminar forced convection inside helical pipes is studied numerically and compared with plain pipes. The study is achieved numerically using the (Fluent-CFD 6.3.26) software program for solving the governing equations. The heat transfer factor and friction factor are calculated using the enhancement technique and compared with the plain tube. In this research the factors that affect the enhancement technique using helical pipes are studied, these factors are the ratio of (pitch /pipe length) (SL), Reynolds number and the heat flux applied to the external surface of the pipe. The results showed that there is an increasing in the heat transfer factor is related to the decreasing of (SL), increasing of Reynolds number and heat flux. The performance of the helical pipes is evaluated depending on the calculation of (Enhancement ratio), and its found that the enhancement ratio increases as Reynolds number increases and (SL) decreases. It is found that the best enhancement ratio was (200%) at (SR=0.05), (Re=2000),(Heat flux=3000W/m2).The results are compared with the literature and there is a good agreement.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Mukilarasan, N. « Heat Transfer Enhancement Using Nanoparticles (Al2o3) ». International Journal for Research in Applied Science and Engineering Technology 6, no 5 (31 mai 2018) : 994–99. http://dx.doi.org/10.22214/ijraset.2018.5159.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Zamfirescu, C., et M. Feidt. « Cascaded Fins for Heat Transfer Enhancement ». Heat Transfer Engineering 28, no 5 (mai 2007) : 451–59. http://dx.doi.org/10.1080/01457630601163835.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Chen, Juin, Hans Müller-Steinhagen et Geoffrey G. Duffy. « Heat transfer enhancement in dimpled tubes ». Applied Thermal Engineering 21, no 5 (avril 2001) : 535–47. http://dx.doi.org/10.1016/s1359-4311(00)00067-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Al-Dadah, R. K., et T. G. Karayiannis. « Passive enhancement of condensation heat transfer ». Applied Thermal Engineering 18, no 9-10 (septembre 1998) : 895–909. http://dx.doi.org/10.1016/s1359-4311(97)00111-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Toé, R., A. Ajakh et H. Peerhossaini. « Heat transfer enhancement by Görtler instability ». International Journal of Heat and Fluid Flow 23, no 2 (avril 2002) : 194–204. http://dx.doi.org/10.1016/s0142-727x(01)00149-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Babus'Haq, Ramiz F., et S. Douglas Probert. « Heat transfer enhancement in electronics cooling ». Applied Energy 45, no 3 (janvier 1993) : 279. http://dx.doi.org/10.1016/0306-2619(93)90037-p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Salam, Noaman. « Heat Transfer Enhancement Through Perforated Fin ». IOSR Journal of Mechanical and Civil Engineering 17, no 10 (mars 2017) : 72–78. http://dx.doi.org/10.9790/1684-17010047278.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Liewkongsataporn, W., T. Patterson et F. Ahrens. « Pulsating Jet Impingement Heat Transfer Enhancement ». Drying Technology 26, no 4 (26 mars 2008) : 433–42. http://dx.doi.org/10.1080/07373930801929268.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

FUKAGAWA, Masayuki, Kan OGATA, Jyunichi MIYAGAWA, Suguru YOSHIDA et Hideo MORI. « Heat Transfer Enhancement in Honeycomb Elements ». Transactions of the Japan Society of Mechanical Engineers Series B 71, no 703 (2005) : 893–900. http://dx.doi.org/10.1299/kikaib.71.893.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

James, R. W. « Heat transfer enhancement and energy conservation ». Cryogenics 32, no 4 (janvier 1992) : 414. http://dx.doi.org/10.1016/0011-2275(92)90065-i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Trivedi, Maulin, Rangesh Jagannathan et Craig T. Johansen. « Convective heat transfer enhancement with nanoaerosols ». International Journal of Heat and Mass Transfer 102 (novembre 2016) : 1180–89. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Sahiti, N., F. Durst et A. Dewan. « Heat transfer enhancement by pin elements ». International Journal of Heat and Mass Transfer 48, no 23-24 (novembre 2005) : 4738–47. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.07.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Helal Zgayer, Ajaj. « Heat Transfer Enhancement Using Helical Pipes ». Anbar Journal of Engineering Sciences 5, no 1 (1 août 2012) : 126–39. http://dx.doi.org/10.37649/aengs.2012.41143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Kamiński, Marcin. « Homogenization of transient heat transfer problems for some composite materials ». International Journal of Engineering Science 41, no 1 (janvier 2003) : 1–29. http://dx.doi.org/10.1016/s0020-7225(02)00144-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Zhou, Q., H. W. Zhang et Y. G. Zheng. « A homogenization technique for heat transfer in periodic granular materials ». Advanced Powder Technology 23, no 1 (janvier 2012) : 104–14. http://dx.doi.org/10.1016/j.apt.2011.01.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Chalaev, Djamalutdin, Nina Silnyagina, Oleksii Shmatok et Oleksandr Nedbailo. « Heat transfer enhancement in a corrugated tube heat exchanger ». Ukrainian Food Journal 5, no 2 (juin 2016) : 376–86. http://dx.doi.org/10.24263/2304-974x-2016-5-2-15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Abd zaid, Duaa Nadheer, et Dhafer A. Hamzah. « Heat Transfer Enhancement by Turbulence Generator inside Heat Receiver ». Al-Qadisiyah Journal for Engineering Sciences 13, no 4 (2 janvier 2021) : 268–73. http://dx.doi.org/10.30772/qjes.v13i4.680.

Texte intégral
Résumé :
Tubular heat exchanger (THEX), that has been in numerous engineering applications, represents an apparatus that makes heat to be exchanged between two fluids having different changing in temperatures and kept separated by means of a solid wall. In order to enhance the efficiency of the THEX, the rate of heat transfer at the tube side should be improved. Inserting a twisted tape inside the heat exchanger’s tube is one of the passive techniques that has been widely used to improve the heat transfer especially in air conditioning and cooling, processes of power recovery, processes for food and dairy, and plants for chemical processing. The heat exchanger enhancement is achieved by means of using a twisted tape inserted with twisting ratios (TR) equal to 3.2, 4.4, and 5.5, independently. The influences of 2-D parameters such as Nusselt number and frictional coefficient on the THEX’s effectiveness were investigated. The aim of the study is inserting a twisted tape inside the testing pipe to produced turbulent flow and, therefore, creating large turbulence rate inside the pipe that plays an significant role in improving the transferred heat and increasing the drop in the pressure. In this work, the inserted tape has a width and length equal to 21.5 mm and 1000 mm, respectively. The inner and outer diameters of the used pipes were 23 mm and 22 mm, respectively. The tested sectional length of the THEX was equal to 2000 mm. Reynolds number was changed from 500 to 7000. Results obtained from using twisted inserting tapes with varying TR were compared with result from plain tubes. These results were displayed in the contours show the distribution of the temperature and the trajectory of the flow trajectory by axial velocity for testing the low values of Reynolds number applicability in heat exchanger applications
Styles APA, Harvard, Vancouver, ISO, etc.
44

Thansekhar, M. R., et C. Anbumeenakshi. « Heat Transfer Enhancement of Nanofluid Cooled Microchannel Heat Sink ». Advanced Science, Engineering and Medicine 10, no 3 (1 mars 2018) : 346–50. http://dx.doi.org/10.1166/asem.2018.2120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Ponshanmugakumar, A., et R. Rajavel. « Enhancement of Heat Transfer in Double Pipe Heat Exchanger ». Materials Today : Proceedings 16 (2019) : 706–13. http://dx.doi.org/10.1016/j.matpr.2019.05.149.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Hung, Tu-Chieh, Wei-Mon Yan, Xiao-Dong Wang et Chun-Yen Chang. « Heat transfer enhancement in microchannel heat sinks using nanofluids ». International Journal of Heat and Mass Transfer 55, no 9-10 (avril 2012) : 2559–70. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.01.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Lin, Gui-Ping, et Xiu-Gan Yuan. « Mass and heat transfer enhancement of chemical heat pumps ». Journal of Thermal Science 2, no 3 (septembre 1993) : 228–30. http://dx.doi.org/10.1007/bf02650860.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Sayed Ahmed, Sayed Ahmed E., Osama M. Mesalhy et Mohamed A. Abdelatief. « Flow and heat transfer enhancement in tube heat exchangers ». Heat and Mass Transfer 51, no 11 (30 août 2015) : 1607–30. http://dx.doi.org/10.1007/s00231-015-1669-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

., S. D. Ratnakar. « ENHANCEMENT OF HEAT TRANSFER FROM PLATE FIN HEAT SINKS ». International Journal of Research in Engineering and Technology 04, no 05 (25 mai 2015) : 123–26. http://dx.doi.org/10.15623/ijret.2015.0405023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Wang, Yufei, Robin Smith et Jin-Kuk Kim. « Heat exchanger network retrofit optimization involving heat transfer enhancement ». Applied Thermal Engineering 43 (octobre 2012) : 7–13. http://dx.doi.org/10.1016/j.applthermaleng.2012.02.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie