Thèses sur le sujet « Hamiltonian problems »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Hamiltonian problems ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Pester, Cornelia. « Hamiltonian eigenvalue symmetry for quadratic operator eigenvalue problems ». Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601470.
Texte intégralWatkinson, Laura. « Four Dimensional Variational Data Assimilation for Hamiltonian Problems ». Thesis, University of Reading, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485506.
Texte intégralGroves, Mark David. « Hamiltonian theory and its application to water-wave problems ». Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316842.
Texte intégralKoch, Michael Conrad. « Inverse analysis in geomechanical problems using Hamiltonian Monte Carlo ». Kyoto University, 2020. http://hdl.handle.net/2433/253350.
Texte intégralLignos, Ioannis. « Reconfigurations of combinatorial problems : graph colouring and Hamiltonian cycle ». Thesis, Durham University, 2017. http://etheses.dur.ac.uk/12098/.
Texte intégralGu, Xiang. « Hamiltonian structures and Riemann-Hilbert problems of integrable systems ». Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7677.
Texte intégralRudoy, Mikhail. « Hamiltonian cycle and related problems : vertex-breaking, grid graphs, and Rubik's Cubes ». Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113112.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 123-124).
In this thesis, we analyze the computational complexity of several problems related to the Hamiltonian Cycle problem. We begin by introducing a new problem, which we call Tree-Residue Vertex-Breaking (TRVB). Given a multigraph G some of whose vertices are marked "breakable," TRVB asks whether it is possible to convert G into a tree via a sequence of applications of the vertex-breaking operation: disconnecting the edges at a degree-G breakable vertex by replacing that vertex with G degree-1 vertices. We consider the special cases of TRVB with any combination of the following additional constraints: G must be planar, G must be a simple graph, the degree of every breakable vertex must belong to an allowed list G, and the degree of every unbreakable vertex must belong to an allowed list G. We fully characterize these variants of TRVB as polynomially solvable or NP-complete. The TRVB problem is useful when analyzing the complexity of what could be called single-traversal problems, where some space (i.e., a configuration graph or a grid) must be traversed in a single path or cycle subject to local constraints. When proving such a problem NP-hard, a reduction from TRVB can often be used as a simpler alternative to reducing from a hard variant of Hamiltonian Cycle. Next, we analyze several variants of the Hamiltonian Cycle problem whose complexity was left open in a 2007 paper by Arkin et al [3]. That paper is a systematic study of the complexity of the Hamiltonian Cycle problem on square, triangular, or hexagonal grid graphs, restricted to polygonal, thin, super-thin, degree-bounded, or solid grid graphs. The authors solved many combinations of these problems, proving them either polynomially solvable or NP-complete, but left three combinations open. We prove two of these unsolved combinations to be NP-complete: Hamiltonian Cycle in Square Polygonal Grid Graphs and Hamiltonian Cycle in Hexagonal Thin Grid Graphs. We also consider a new restriction, where the grid graph is both thin and polygonal, and prove that the Hamiltonian Cycle problem then becomes polynomially solvable for square, triangular, and hexagonal grid graphs. Several of these results are shown by application of the TRVB results, demonstrating the usefulness of that problem. Finally, we apply the Square Grid Graph Hamiltonian Cycle problem to close a longstanding open problem: we prove that optimally solving an n x n x n Rubik's Cube is NP-complete. This improves the previous result that optimally solving an n x n x n Rubik's Cube with missing stickers is NP-complete. We prove this result first for the simpler case of the Rubik's Square -- an n x n x 1 generalization of the Rubik's Cube -- and then proceed with a similar but more complicated proof for the Rubik's Cube case.
by Mikhail Rudoy.
M. Eng.
De, Martino Giuseppe. « Multi-Value Numerical Modeling for Special Di erential Problems ». Doctoral thesis, Universita degli studi di Salerno, 2015. http://hdl.handle.net/10556/1982.
Texte intégralThe subject of this thesis is the analysis and development of new numerical methods for Ordinary Di erential Equations (ODEs). This studies are motivated by the fundamental role that ODEs play in applied mathematics and applied sciences in general. In particular, as is well known, ODEs are successfully used to describe phenomena evolving in time, but it is often very di cult or even impossible to nd a solution in closed form, since a general formula for the exact solution has never been found, apart from special cases. The most important cases in the applications are systems of ODEs, whose exact solution is even harder to nd; then the role played by numerical integrators for ODEs is fundamental to many applied scientists. It is probably impossible to count all the scienti c papers that made use of numerical integrators during the last century and this is enough to recognize the importance of them in the progress of modern science. Moreover, in modern research, models keep getting more complicated, in order to catch more and more peculiarities of the physical systems they describe, thus it is crucial to keep improving numerical integrator's e ciency and accuracy. The rst, simpler and most famous numerical integrator was introduced by Euler in 1768 and it is nowadays still used very often in many situations, especially in educational settings because of its immediacy, but also in the practical integration of simple and well-behaved systems of ODEs. Since that time, many mathematicians and applied scientists devoted their time to the research of new and more e cient methods (in terms of accuracy and computational cost). The development of numerical integrators followed both the scienti c interests and the technological progress of the ages during whom they were developed. In XIX century, when most of the calculations were executed by hand or at most with mechanical calculators, Adams and Bashfort introduced the rst linear multistep methods (1855) and the rst Runge- Kutta methods appeared (1895-1905) due to the early works of Carl Runge and Martin Kutta. Both multistep and Runge-Kutta methods generated an incredible amount of research and of great results, providing a great understanding of them and making them very reliable in the numerical integration of a large number of practical problems. It was only with the advent of the rst electronic computers that the computational cost started to be a less crucial problem and the research e orts started to move towards the development of problem-oriented methods. It is probably possible to say that the rst class of problems that needed an ad-hoc numerical treatment was that of sti problems. These problems require highly stable numerical integrators (see Section ??) or, in the worst cases, a reformulation of the problem itself. Crucial contributions to the theory of numerical integrators for ODEs were given in the XX century by J.C. Butcher, who developed a theory of order for Runge-Kutta methods based on rooted trees and introduced the family of General Linear Methods together with K. Burrage, that uni ed all the known families of methods for rst order ODEs under a single formulation. General Linear Methods are multistagemultivalue methods that combine the characteristics of Runge-Kutta and Linear Multistep integrators... [edited by Author]
XIII n.s.
Kang, Jinghong. « The Computational Kleinman-Newton Method in Solving Nonlinear Nonquadratic Control Problems ». Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30435.
Texte intégralPh. D.
Attia, Ahmed Mohamed Mohamed. « Advanced Sampling Methods for Solving Large-Scale Inverse Problems ». Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73683.
Texte intégralPh. D.
Yang, Weihua. « Supereulerian graphs, Hamiltonicity of graphes and several extremal problems in graphs ». Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00877793.
Texte intégralBreitenbach, Tim [Verfasser], Alfio [Gutachter] Borzi et Kurt [Gutachter] Chudej. « A sequential quadratic Hamiltonian scheme for solving optimal control problems with non-smooth cost functionals / Tim Breitenbach ; Gutachter : Alfio Borzi, Kurt Chudej ». Würzburg : Universität Würzburg, 2019. http://d-nb.info/1188564781/34.
Texte intégralNASCIMENTO, Francisco José dos Santos. « Estabilidade Linear no Problema de Robe ». Universidade Federal do Maranhão, 2017. http://tedebc.ufma.br:8080/jspui/handle/tede/1309.
Texte intégralMade available in DSpace on 2017-04-19T13:09:32Z (GMT). No. of bitstreams: 1 Francisco José dos Santos Nascimento.pdf: 743351 bytes, checksum: 997f8a5009a3bbc979a7206041daf583 (MD5) Previous issue date: 2017-02-17
CAPES
In this work, we discuss the article The Existence and Stability of Equilibrium Points in the Robe Restricted Three-Body Probem due to Hallan and Rana. For this we present some basic definitions and results abut Hamiltonian systems such as equilibrium stability of linear Hamiltonian systems. We set out the restricted problem of the three bodies and show some classic results of the problem. Finally we present the Robe’s problem and discuss the main results using Hamiltonian systems theory.
Nesse trabalho, dissertamos sobre o artigo \The Existence and Stability of Equilibrium Points in the Robe Restricted Three-Body Probem" devido a Hallan e Rana. Para isso apresentamos definições e resultados básicos sobre sistemas Hamiltonianos tais como estabilidade de equilíbrios de sistemas Hamiltonianos lineares. Enunciamos o problema restrito dos três corpos e mostramos alguns resultados clássicos do problema. Por fim apresentamos o problema de Robe e discutimos os principais resultados usando a teoria de sistemas Hamiltonianos.
Weichselbaum, Andreas. « Nanoscale Quantum Dynamics and Electrostatic Coupling ». Ohio University / OhioLINK, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1091115085.
Texte intégralSeewald, Nadiane Cristina Cassol [UNESP]. « Método do hamiltoniano termodinamicamente equivalente para sistemas de muitos corpos ». Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/102540.
Texte intégralFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
O objetivo da Tese é investigar a aplicabilidade e propor extensões do método do hamiltoniano termodinamicamente equivalente (MHTE) para sistemas de muitos corpos descritos por uma teoria de campos. Historicamente, o MHTE tem sua origem na teoria quântica de muitos corpos para descrever o fenômeno da supercondutividade. O método consiste na observação de que o hamiltoniano de um sistema pode ser diagonalizado exatamente através de uma transformação unitária quando um número finito de momentos transferidos que contribuem para a interação é levado em conta no limite termodinâmico. Essa transformação unitária depende explicitamente de funções de gap que podem ser determinadas através do método variacional de Gibbs. Na presente Tese, extensões do método são feitas visando aplicações em sistemas de muitos corpos em diferentes situações, tais como: transições de fase estáaticas, evolução temporal de parâmetros de ordem descrita por equações dinâmicas estocásticas do tipo Ginzburg-Landau-Langevin (GLL), teorias quânticas de campos escalares relativísticos e teorias de muitos corpos para sistemas fermiônicos não relativísticos. Mostra-se, em particular, que o MHTE é um esquema de aproximação sistemático e controlável que permite incorporar acoplamentos de componentes de Fourier de parâmetros de ordem além do modo zero, da mesma forma que em teorias quânticas relativísticas ou não relativísticas ele incorpora correlações não perturbativas entre as partículas além daquelas levadas em conta pelas tradicionais aproximações de campo médio. Métodos são desenvolvidos para obtermos soluções numéricas explícitas com o objetivo de avaliar a aplicabilidade do MHTE em alguns casos específicos. Particular atenção é dedicada ao controle de divergências de Rayleigh-Jeans nas simulações numéricas de equações de GLL
The general objective of the Thesis is to apply the Method of the Thermodynamically Equivalent Hamiltonian (MTEH) to many-body systems described by a field theory. Historically, the MTEH has its origins in the quantum theory of manybody systems to describe the phenomenon of superconductivity. The method is based on the observation that the Hamiltonian of the system can be diagonalized exactly with a unitary transformation when a finite number of transfer momenta of the interaction are taken into account in the thermodynamic limit. This unitary transformation depends explicitly on gap functions that can be determined with the use of the Gibbs variational principle. In the present Thesis, extensions of the method are made envisaging applications in many-body systems in different situations, like: static phase transitions, time evolution of order parameters described by dynamic stochastic Ginzburg-Landau-Langevin equations, relativistic quantum scalar field theories, and many-body theories for nonrelativistic fermionic systems. It is shown that the MTEH is a systematic and controllable approximation scheme that in the theory of phase transitions allows to incorporate Fourier modes of the order parameter beyond the zero mode, in the same way that in the relativistic and nonrelativistic theories it incorporates particle nonperturbative correlations beyond those taken into account by the traditional mean field approximation. Methods are developed to obtain explicit numerical solutions with the aim to assess the applicability of the MTEH in specific situations. Particular attention is devoted to the control of Rayleigh-Jeans ultraviolet divergences in the numerical simulations of Ginzburg-Landau-Langevin equations
Seewald, Nadiane Cristina Cassol. « Método do hamiltoniano termodinamicamente equivalente para sistemas de muitos corpos / ». São Paulo, 2012. http://hdl.handle.net/11449/102540.
Texte intégralBanca: Marcus Benghi Pinto
Banca: Ney Lemke
Banca: Sandra dos Santos Padula
Banca: Yogiro Hama
Resumo: O objetivo da Tese é investigar a aplicabilidade e propor extensões do método do hamiltoniano termodinamicamente equivalente (MHTE) para sistemas de muitos corpos descritos por uma teoria de campos. Historicamente, o MHTE tem sua origem na teoria quântica de muitos corpos para descrever o fenômeno da supercondutividade. O método consiste na observação de que o hamiltoniano de um sistema pode ser diagonalizado exatamente através de uma transformação unitária quando um número finito de momentos transferidos que contribuem para a interação é levado em conta no limite termodinâmico. Essa transformação unitária depende explicitamente de funções de gap que podem ser determinadas através do método variacional de Gibbs. Na presente Tese, extensões do método são feitas visando aplicações em sistemas de muitos corpos em diferentes situações, tais como: transições de fase estáaticas, evolução temporal de parâmetros de ordem descrita por equações dinâmicas estocásticas do tipo Ginzburg-Landau-Langevin (GLL), teorias quânticas de campos escalares relativísticos e teorias de muitos corpos para sistemas fermiônicos não relativísticos. Mostra-se, em particular, que o MHTE é um esquema de aproximação sistemático e controlável que permite incorporar acoplamentos de componentes de Fourier de parâmetros de ordem além do modo zero, da mesma forma que em teorias quânticas relativísticas ou não relativísticas ele incorpora correlações não perturbativas entre as partículas além daquelas levadas em conta pelas tradicionais aproximações de campo médio. Métodos são desenvolvidos para obtermos soluções numéricas explícitas com o objetivo de avaliar a aplicabilidade do MHTE em alguns casos específicos. Particular atenção é dedicada ao controle de divergências de Rayleigh-Jeans nas simulações numéricas de equações de GLL
Abstract: The general objective of the Thesis is to apply the Method of the Thermodynamically Equivalent Hamiltonian (MTEH) to many-body systems described by a field theory. Historically, the MTEH has its origins in the quantum theory of manybody systems to describe the phenomenon of superconductivity. The method is based on the observation that the Hamiltonian of the system can be diagonalized exactly with a unitary transformation when a finite number of transfer momenta of the interaction are taken into account in the thermodynamic limit. This unitary transformation depends explicitly on gap functions that can be determined with the use of the Gibbs variational principle. In the present Thesis, extensions of the method are made envisaging applications in many-body systems in different situations, like: static phase transitions, time evolution of order parameters described by dynamic stochastic Ginzburg-Landau-Langevin equations, relativistic quantum scalar field theories, and many-body theories for nonrelativistic fermionic systems. It is shown that the MTEH is a systematic and controllable approximation scheme that in the theory of phase transitions allows to incorporate Fourier modes of the order parameter beyond the zero mode, in the same way that in the relativistic and nonrelativistic theories it incorporates particle nonperturbative correlations beyond those taken into account by the traditional mean field approximation. Methods are developed to obtain explicit numerical solutions with the aim to assess the applicability of the MTEH in specific situations. Particular attention is devoted to the control of Rayleigh-Jeans ultraviolet divergences in the numerical simulations of Ginzburg-Landau-Langevin equations
Doutor
Schütte, Albrecht. « Hamiltonian flow equations and the electron phonon problem ». [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964423294.
Texte intégralBredariol, Grilo Alex. « Quantum proofs, the local Hamiltonian problem and applications ». Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC051/document.
Texte intégralIn QMA, the quantum generalization of the complexity class NP, a quantum state is provided as a proof of a mathematical statement, and this quantum proof can be verified by a quantum algorithm. This complexity class has a very natural complete problem, the Local Hamiltonian problem. Inspired by Condensed Matters Physics, this problem concerns the groundstate energy of quantum systems. In this thesis, we study some problems related to QMA and to the Local Hamiltonian problem. First, we study the difference of power when classical or quantum proofs are provided to quantum verification algorithms. We propose an intermediate setting where the proof is a “simpler” quantum state, and we manage to prove that these simpler states are enough to solve all problems in QMA. From this result, we are able to present a new QMA-complete problem and we also study the one-sided error version of our new complexity class. Secondly, we propose the first relativistic verifiable delegation scheme for quantum computation. In this setting, a classical client delegates her quantumcomputation to two entangled servers who are allowed to communicate, but respecting the assumption that information cannot be propagated faster than speed of light. This protocol is achieved through a one-round two-prover game for the Local Hamiltonian problem where provers only need polynomial time quantum computation and access to copies of the groundstate of the Hamiltonian. Finally, we study the quantumPCP conjecture, which asks if all problems in QMA accept aproof systemwhere only a fewqubits of the proof are checked. Our result consists in proposing an extension of QPCP proof systems where the verifier is also provided an auxiliary classical proof. Based on this proof system, we propose a weaker version of QPCP conjecture. We then show that this new conjecture can be formulated as a Local Hamiltonian problem and also as a problem involving the maximum acceptance probability of multi-prover games. This is the first equivalence of a multi-prover game and some QPCP statement
Moussi, El hadi. « Analyse de structures vibrantes dotées de non-linéarités localisées à jeu à l'aide des modes non-linéaires ». Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4792/document.
Texte intégralThis work is a collaboration between EDF R&D and the Laboratory of Mechanics and Acoustics. The objective is to develop theoretical and numerical tools to compute nonlinear normal modes (NNMs) of structures with localized nonlinearities.We use an approach combining the harmonic balance and the asymptotic numerical methods, known for its robustness principally for smooth systems. Regularization techniques are used to apply this approach for the study of nonsmooth problems. Moreover, several aspects of the method are improved to allow the computation of NNMs for systems with a high number of degrees of freedom (DOF). Finally, the method is implemented in Code_Aster, an open-source finite element solver developed by EDF R&D.The nonlinear normal modes of a two degrees-of-freedom system are studied and some original characteristics are observed. These observations are then used to develop a methodology for the study of systems with a high number of DOFs. The developed method is finally used to compute the NNMs for a model U-tube of a nuclear plant steam generator. The analysis of the NNMs reveals the presence of an interaction between an out-of-plane (low frequency) and an in-plane (high frequency) modes, a result also confirmed by the experiment. This modal interaction is not possible using linear modal analysis and confirms the interest of NNMs as a diagnostic tool in structural dynamics
Rossato, Rafael Antonio. « Sistemas elípticos de tipo hamiltoniano perto da ressonância ». Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-13042015-164728/.
Texte intégralIn this work we consider elliptic systems of hamiltonian type, involving the Laplacian operator, a linear part depending on two parameters and a sublinear perturbation. We obtain the existence of at least two solutions when the linear part is near resonance (this phenomenon is called almost-resonance). We also show the existence of a third solution when the almost-resonance is with respect to the first eigenvalue of the Laplacian operator. In the resonant case, we obtain similar results, with an additional sublinear term. These systems are associated with strongly indefinite functionals, and the solutions are obtained by Saddle Point Theorem and Galerkin approximation.
Benner, Peter, et Cedric Effenberger. « A rational SHIRA method for the Hamiltonian eigenvalue problem ». Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200900026.
Texte intégralJurčík, Lukáš. « Evoluční algoritmy při řešení problému obchodního cestujícího ». Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2014. http://www.nusl.cz/ntk/nusl-224447.
Texte intégralBenner, P., et H. Faßbender. « A restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem ». Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800797.
Texte intégralGupta, Vishal. « Decoupling of Hamiltonian system with applications to linear quadratic problem ». Arlington, TX : University of Texas at Arlington, 2007. http://hdl.handle.net/10106/905.
Texte intégralBowles, Mark Nicholas. « A stability result for the lunar three body problem ». Thesis, University of Warwick, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367149.
Texte intégralJones, Billy Darwin. « Light-front Hamiltonian approach to the bound-state problem in quantum electrodynamics / ». The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487946103569513.
Texte intégralSCHUMAN, BERTRAND. « Sur le probleme du centre isochrone des systemes hamiltoniens polynomiaux ». Paris 6, 1998. http://www.theses.fr/1998PA066617.
Texte intégralFiala, Jan. « DNA výpočty a jejich aplikace ». Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-412902.
Texte intégralDiagne, Mamadou Lamine. « Modelling and control of systems of conservation laws with a moving interface : an application to an extrusion process ». Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10098/document.
Texte intégralThis thesis is devoted to the analysis of Partial Differential Equations (PDEs) which are coupled through a moving interface. The motion of the interface obeys to an Ordinary Differential Equation (ODE) which arises from a conservation law. The first part of this thesis concerns the modelling of an extrusion process based on mass, moisture content and energy balances. These balances laws express heat and homogeneous material transport in an extruder by hyperbolic PDEs which are defined in complementary time-varying domains. The evolution of the coupled domains is given by an ODE which is derived from the conservation of mass in an extruder. In the second part of the manuscript, a mathematical analysis has been performed in order to prove the existence and the uniqueness of solution for such class of systems by mean of contraction mapping principle. The third part of the thesis concerns the transformation of an extrusion process mass balance equations into a particular input delay system framework using characteristics method. Then, the stabilization of the moving interface by a predictor-based controller has been proposed. Finally, an extension of the analysis of moving interface problems to a particular class of systems of conservations laws has been developed. Port-Hamiltonian formulation of systems of two conservation laws defined on two complementary time-varying intervals has been studied. It has been shown that the coupled system is a port-Hamiltonian system augmented with two variables being the characteristic functions of the two spatial domains
Moumeni, Abdelkader. « Étude d'un problème de perturbations singulières à propos d'une équation d'évolution non classique ». Nancy 1, 1992. http://www.theses.fr/1992NAN10105.
Texte intégralJurkiewicz, Samuel. « Theorie des graphes : cycles hamiltoniens, coloration d'aretes et problemes de pavages ». Paris 6, 1996. http://www.theses.fr/1996PA066206.
Texte intégralRosales, de Cáceres José J. « On the effect of the Sun's gravity around the Earth-Moon L1 and L2 libration points ». Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670809.
Texte intégralEn aquesta tesi explorem alguns aspectes de la dinàmica al voltant dels punts L1 i L2 Terra-Lluna en el context de dos problemes restringits de quatre cossos: el problema bicircular (PBC) i el problema quasi-circular (PQBC). Tant el PBC com el PQBC modelen la dinàmica d’una partícula sense massa que es mou sota la influència del Sol, la Terra i la Lluna. Tot i que aquests dos models es centren en el mateix sistema, és rellevant estudiar-los tots dos perquè el seu comportament al voltant de la L2 és qualitativament diferent. Aquests dos models es poden escriure en el formalisme hamiltonià com a pertorbacions periòdiques del problema restringit dels tres cossos (PRTC) dependents del temps. Per estudiar aquests hamiltonians, utlitzem eines numèriques adaptades a aquest tipus de models per obtenir una idea de l’espai de fases. Aquestes dues tècniques són la reducció a la variety central i el càlcul i la continuació de tors 2D. Per al PBC, l'anàlisi es centra al voltant del punt L2. Els resultats obtinguts mostren que la reducció a la varietat central i la forma normal no autònoma calculada en aquesta tesi no proporcionen informació útil sobre el moviment neutre al voltant de L2. L'enfocament adoptat es calcular famílies de tors 2D, i explorar les seves connexions i estabilitat. Com a resum d’aquest esforç, s'identifiquen un total de sis famílies de tors 2D: dues famílies d'òrbites quasi-periòdiques planes tipus Lyapunov i quatre verticals. Una de les famílies verticals s'obté per continuació directa de les òrbites Halo del PRTC. Això demostra que la família de les òrbites Halo del PRTC sobreviuen al PBC, entenent que aquesta nova família és cantoriana. També es demostra que una de les altres famílies verticals és semblant a les Halo. Per tant, els membres d’aquesta família poden ser candidats potencials per a futures missions espacials. No obstant això, aquests tors són hiperbòlics, a diferència dels que provenen directament de les Halo del PRTC, que són parcialment el·líptics. També es mostra que aquesta família de tors semblants a les Halo prové d’una família d’òrbites quasi-periòdiques del PRTC que són ressonants amb la freqüència del Sol. Per tant, aquestes famílies d’òrbites semblants a les Halo al PBC tenen els seus homòlegs al PRTC. Per al PQBC, el focus de les anàlisis es troba en els punts L1 i L2 Terra-Lluna. En aquest model, la reducció a la varietat central proporciona informació qualitativa rellevant sobre la dinàmica al voltant de L1 i L2. El principal resultat és que L1 i L2 tenen un comportament qualitatiu similar. En ambdós casos hi ha dues famílies d’òrbites quasi-periòdiques tipus Lyapunov, una plana i una vertical. També es demostra que la família plana quasi-periòdica tipus Lyapunov sobrevé una bifurcació tipus pitchfork (quasi-periòdica), donant lloc a dues famílies d’òrbites quasi periòdiques amb un component vertical. Entre ells, hi havia una família d’òrbites quasi-periòdiques tipos Lissajous, amb tres freqüències bàsiques. Qualitativament, l’espai de fase de la varietat central, tal com es construeix en aquesta tesi, s’assembla a l’espai de fase del la varietat central del PRTC al voltant de L1 i L2. Al PQBC també es continuen famílies de tors 2D invariants, tant per a L1 com per a L2. En aquests casos, es continuen les famílies planes i verticals quasi-periòdiques. Durant aquest procés es troben bifurcacions a les families d'òrbites quasi-periòdiques planes. Una conclusió d’aquest experiment numèric és que la família d’òrbites amb component vertical nascudes de la bifurcació no són les contraparts de les Halo de PRTC. Les òrbites Halo de PRTC sobreviuen en el PQBC, però no semblen estar connectades a la família plana quasi-periòdica. Finalment, i també en el context del PBC i el PQBC, es s'estudien simulacions numèriques per estudiar les transferències des d’una òrbita d’estacionària al voltant de la Terra fins a una òrbita Halo al voltant del punt L2 Terra-Lluna. La principal conclusió és que les varietats invariants de les òrbites objectiu estudiades passen molt a prop de la Terra. La rellevància d’aquest resultat és que mostra que hi ha transferències d’una maniobra des de d'una òrbita al voltat de Terra a les òrbites L2 Halo Terra-Lluna. No és així quan s’utilitza el PRTC com a model de referència. Es fan experiments tant per al BCP com per al QBCP, i en tots els casos es demostra que el cost total en termes de ∆V i temps de transferència és comparable a altres tècniques que requereixen dues o més maniobres.
Becker, Kai Helge. « Twin-constrained Hamiltonian paths on threshold graphs : an approach to the minimum score separation problem ». Thesis, London School of Economics and Political Science (University of London), 2010. http://etheses.lse.ac.uk/3209/.
Texte intégralManukure, Solomon. « Hamiltonian Formulations and Symmetry Constraints of Soliton Hierarchies of (1+1)-Dimensional Nonlinear Evolution Equations ». Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6310.
Texte intégralBarrow-Green, June. « Poincaré and the three body problem ». n.p, 1993. http://ethos.bl.uk/.
Texte intégralColombo, Jones. « O problema da reconstrução dos torneios com quociente simples normal ». [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306862.
Texte intégralDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-07-26T16:45:39Z (GMT). No. of bitstreams: 1 Colombo_Jones_M.pdf: 6336447 bytes, checksum: 620030ff0cb706f37ef7c0f7947b0631 (MD5) Previous issue date: 2000
Resumo: Neste trabalho, o objetivo foi o de estudar o problema da reconstrução para torneios com o quociente simples normal. Com este intuito, introduzimos e desenvolvemos no capítulo 1 diversos conceitos, tais como, o quociente de um torneio e mostramos que torneios hipomorfos tais que ambos sejam não simples possuem o mesmo quociente simples. No capítulo 2 introduzimos os conceitos de ciclo minimais e característico. Ao final mostramos que a existência de quociente simples normal é uma propriedade hipomorfa para torneios de ordem superior ou igual a 7. No capítulo 3 demonstramos que os torneios hamiltonianos de ordem maior ou igual a 4 que têm quociente simples normal são reconstrutíveis, se excluirmos um torneio de ordem 5 e dois de ordem 6. Além disso, no início deste capítulo verificamos que os torneios exibidos por Stockmeyer são realmente contra exemplos da conjectura da reconstrução , a qual diz que se dois torneios têm as mesmas cartas são isomorfos. E finalmente apresentamos uma análise das relações entre as classes dos torneios reconstrutíveis atualmente conhecidos(1999).
Abstract: In this work, the objective was to study the reconstruction problem for tournaments with simple normal quotient. With this intention, we introduced and developed in chapter one few concepts, so as, quotient of a tournaments which are not both simple have the same simple quotient. In chapter two we introduce the concepts of minimal and characteristic cycles, and ending this topic we show that the existence of a normal simple quotient is a hipomorphic property for tournaments of order seven or higher. In third chapter we show that hamiltonian tournaments of order four or higher which have normal simple quotient are reconstructible, if we exclude an order five and two of order six tournaments. Moreover, in the beginning of this chapter we check that tour- naments showed by Stockmeyer, be really counterexamples of reconstruction conjecture, which says that if two tournaments with the same cards are isomorphic. Finally we pre-sent and analyse the relation between the reconstruction classes atually known (1999).
Mestrado
Mestre em Matemática
Benner, P., V. Mehrmann et H. Xu. « A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils ». Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800915.
Texte intégralXie, Zhifu. « On the N-body Problem ». Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1444.pdf.
Texte intégralGadea, Florent Xavier. « Theorie des hamiltoniens effectifs : applications aux problemes de diabatisation et de collision reactive ». Toulouse 3, 1987. http://www.theses.fr/1987TOU30276.
Texte intégralGadea, Florent Xavier. « Théorie des hamiltoniens effectifs applications aux problèmes de diabatisation et de collision réactive / ». Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37605246f.
Texte intégralOda, Eduardo. « Fenômeno Fuller em problemas de controle ótimo : trajetórias em tempo mínino de veículos autônomos subaquáticos ». Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-05052009-111117/.
Texte intégralThe equations of the two-dimensional model for autonomous underwater vehicles provide an example of a nonlinear control system which illustrates properties of optimal control theory. We present, systematically, how the concepts of the Hamiltonian formalism and the Lie theory naturally appear in this context. For this purpose, we briefly study the Pontryagin\'s Maximum Principle and discuss features of affine systems. We treat carefully the Fuller Phenomenon, providing criteria to detect its presence at junctions with an algebraic notation. We present a numerical approach to treat optimal control problems and we conclude with an application of the results in the bidimesional model of autonomous underwater vehicle.
Gigola, Silvia Viviana. « Optimización del problema de valor propio inverso para matrices estructuradas ». Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/106367.
Texte intégralAn important area of Applied Mathematics is Matrix Analysis due to the fact that many problems can be reformulated in terms of matrices and, in this way, their resolution is facilitated. The inverse eigenvalue problem consists of the reconstruction of a matrix from given spectral data. This type of problems occurs in different engineering areas and arises in numerous applications. In this thesis the inverse eigenvalue problem for three specific sets of matrices is solved. Inverse eigenvalue problems have been studied from theoretical and numerical points of view as well as from their applications. An inverse eigenvalue problem properly posed must satisfy constraints referring to the spectral data and to the desirable structure. Given a matrix X and a diagonal matrix D, solutions of the equation AX = XD are searched, where A is a matrix with a prescribed structure. Based on these restrictions on matrix A, a variety of inverse eigenvalue problems arise. L. Lebtahi and N. Thome solved the problem for the case of a matrix A hermitian and reflexive or antireflexive with respect to a matrix J tripotent and hermitian. In Chapter 2 of this tesis, the results are extended to the case of a matrix A hermitian and reflexive with respect to a matrix J {k+1}-potent and normal. Theorem 2.2.1 provides conditions under which the problem has a solution and the explicit form of the general solution is given. In addition, in case of the set of solutions of the inverse eigenvalue problem is not empty, the associated Procrustes problem is solved. Hamiltonian and skewHamiltonian matrices appear in the resolution of important problems of Systems and Control Theory. The inverse eigenvalue problem for hermitian and generalized Hamiltonian matrices was analyzed by Z. Zhang, X. Hu and L. Zang. Afterwards, the case of hermitian and skewHamiltonian generalized matrices by Z. Bai was considered. In both cases, the inverse eigenvalue problem and the best approximation problem were studied. An extension of the Hamiltonian matrices are the J-Hamiltonian matrices, and it is one of the original contributions of this work. In Chapters 3 and Chapter 4 of this thesis the inverse eigenvalue the respective problems for normal J-Hamiltonian matrices and for normal J-skewHamiltonian matrices are studied. For the resolution of the normal J-Hamiltonian matrices case, four methods are presented. The first two methods are general and they give conditions under which the problem is solvable. The third method is formalized in the Theorem 3.2.2. It provides the conditions under which the problem has a solution and the infinite solutions are presented. The last method states the form of all the solutions. The main result is established in the Theorem 3.2.3. A complete section is dedicated to solve the associated optimization Procrustes problem in case of the problem admits solution. Below, a summary of the organization of this thesis and a brief description of its four chapters are presented. Chapter 1 contains an introduction to the inverse eigenvalue problem, the Procrustes problem, and some other ones studied in the literature. In Chapter 2, the inverse eigenvalue problem for a hermitian reflexive matrix with respect to a normal {k + 1}-potent matrix is studied, as well as the associated optimization Procrustes problem. In addition, an algorithm that solves the Procrustes problem is designed and an example that shows the performance of the algorithm is given. The inverse eigenvalue problem for a normal J-Hamiltonian matrix is investigated in Chapter 3 by using several methods and the associated optimization Procrustes problem is considered. An algorithm that allows us to calculate the solution of the optimization problem is proposed and some examples are provided. In Chapter 4, based on the results obtained in Chapter 3, the inverse eigenvalue problem for normal J-skewHamiltonian matrices is addressed.
Una àrea important de la Matemàtica és l'Anàlisi Matricial ja que molts problemas poden reformular-se en termes de matrius i així facilitar la seua resolució. El problema de valor propi invers consisteix en la reconstrucció d'una matriu a partir de dades espectrals donades. Aquest tipus de problemes es presenta a diferents àrees de l'enginyeria i sorgeix a nombroses aplicacions. Els problemes de valors propis inversos han estat estudiats des dels punts de vista teòric, numèric com també del de les aplicacions. A aquesta tesi es resol el problema per a tres tipus específics de matrius. En diversos casos, per tal de que el problema de valor propi tingui sentit, és necessari imposar una estructura específica a la matriu. Un problema de valor propi invers adequadament plantejat ha de satisfer dues restriccions: la referida a les dades espectrals i la restricció estructural desitjada. Donada una matriu X i una matriu diagonal D, es busquen solucions de l'equació AX = XD sent A una matriu amb una determinada estructura. A partir d'aquestes restriccions sobre la matriu A sorgeixen una varietat de problemes de valors propis inversos. El problema pel cas d'una matriu A hermítica i reflexiva o antireflexiva respecte d'una matriu J tripotent i hermítica ha sigut resolt per L. Lebtahi i N. Thome. Al Capítol 2 d'aquesta memòria s'estén este treball esmentat pel cas d'una matriu A hermítica reflexiva respecte d'una matriu J {k+1}-potent I normal. Al Teorema 2.2.1 es donen les condicions sota les quals el problema té solució i es proporciona la forma explícita de la solució general. A més, en el cas de que el conjunt de solucions del problema sigui no buit, es resol el problema de Procrustes associat. Les matrius Hamiltonianes i antiHamiltonianes apareixen en la resolució d'importants problemes de la Teoria de Sistemes i Control. El problema de valor propi invers per a matrius hermítiques i Hamiltonianes generalitzades va ser analitzat per Z. Zhang, X. Hu i L. Zang i posteriorment va ser considerat el cas de matrius hermítiques i antiHamiltonianes generalitzades per Z. Bai. En ambdós casos no només s'estudia el problema de valor propi invers i el problema de trobar la millor aproximació. Una extensió de les matrius Hamiltonianes són les matrius J-Hamiltonianes, i correspon a una de les aportacions originals que es realitzen a aquesta memòria. Als Capítols 3 i 4 s'estudien el problema de valor propi invers per a matrius normals J-Hamiltonianes i per a normals J-antiHamiltonianes. Per a la resolució del cas de les matrius normals J-Hamiltonianes es presenten quatre mètodes diferents. Els dos primers mètodes són generals i donen condicions per a que el problema tingui solución. El tercer mètode queda formalitzat al Teorema 3.2.2 que proporciona les condicions sota les quals el problema té solució i es presenten infinites solucions del mateix. Totes les solucions s'obtenen amb l'últim mètode. El principal resultat es dona al Teorema 3.2.3. Una secció completa està dedicada a la resolució del problema de Procrustes associat. L'organització d'aquesta tesi es la següent. El Capítol 1 conté una introducció al problema de valor propi invers i al problema de Procrustes. Al Capítol 2 s'estudia el problema de valor propi invers per a una matriu hermítica reflexiva respecte d'una matriu normal {k + 1}-potent, així com també el problema d'optimització de Procrustes associat. A més, es proposa un algoritme que resol el problema de Procrustes i es dona un exemple que mostra el funcionament del mateix. El problema de valor propi invers per a una matriu normal J-Hamiltoniana es resol al Capítol 3 fent servir diferents mètodes i a més es considera el problema d'optimització de Procrustes associat. Es proposa un algoritme que serveix per a calcular la solució del problema d'optimització i es presenten alguns exemples. Al Capítol 4, en funció dels resultats obtinguts al Capítol 3, s'aborda e
Gigola, SV. (2018). Optimización del problema de valor propio inverso para matrices estructuradas [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/106367
TESIS
Castan, Thibaut. « Stability in the plane planetary three-body problem ». Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066062/document.
Texte intégralArnold showed the existence of quasi-periodic solutions in the plane planetary three-body prob- lem, provided that the mass of two of the bodies, the planets, is small compared to the mass of the third one, the Sun. This smallness condition depends in a sensitive way on the analyticity widths of the Hamiltonian of the three-body problem, expressed with the help of some tran- scendental coordinates. Hénon gave a minimal ratio of masses necessary to the application of Arnold’s theorem. The main objective of this thesis is to determine a sufficient condition on this ratio. A first part of this work consists in estimating these analyticity widths, which requires a precise study of the complex Kepler equation, as well as the complex singularities of the disturb- ing function. A second part consists in reworking the Hamiltonian to put it under normal form, in order to apply the KAM theorem (KAM standing for Kolmogorov-Arnold-Moser). In this aim, it is essential to work with the secular Hamiltonian to put it under a suitable normal form. We can then quantify the non-degeneracy of the secular Hamiltonian, as well as estimate the perturbation. Finally, it is necessary to derive a quantitative version of the KAM theorem, in order to identify the hypotheses necessary for its application to the plane three-body problem. After this work, it is shown that the KAM theorem can be applied for a ratio of masses that is close to 10^(−85) between the planets and the star
Bonomo, Wescley. « Contribuições para o estudo do centralizador de fluxos, Hamiltonianos e ações de IR^n ». Instituto de Matemática. Departamento de Matemática, 2016. http://repositorio.ufba.br/ri/handle/ri/22839.
Texte intégralApproved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-06-07T11:19:46Z (GMT) No. of bitstreams: 1 Tese - Wescley.pdf: 2339393 bytes, checksum: 22bfa3dae7b30d963d35d1f54414a3df (MD5)
Made available in DSpace on 2017-06-07T11:19:46Z (GMT). No. of bitstreams: 1 Tese - Wescley.pdf: 2339393 bytes, checksum: 22bfa3dae7b30d963d35d1f54414a3df (MD5)
O conteúdo desta Tese está relacionado a versão da conjectura de Smale sobre a trivialidade do centralizador para certas classes de fluxos e ações de Rn. A conjectura de Smale estabelece que a maioria dos sistemas dinâmicos tem centralizador trivial, significando que toda a dinâmica que comuta com a original é um reescalonamento temporal da mesma. Neste trabalho, mostramos a trivialidade do centralizador para as seguintes classes de sistemas dinâmicos: (i) conjunto aberto de campos de classe C1 com singularidades hiperbólicas não-ressonantes e que satisfazem a Komuro-expansividade, os quais contém o atrator de Lorenz clássico como caso particular; (ii) conjunto Baire residual de campos conservativos de classe C1; (iii) conjunto Baire residual de campos hamiltonianos de classe C1. Além disso, provamos que o conjunto das ações de Rd localmente livres, expansivas e de classe C1 têm centralizador quase-trivial. Em particular, obtivemos os seguintes: (i) Rd-ações Anosov transitivas em variedades compactas têm centralizador quase-trivial; (ii) caracterização de sub-ações expansivas de ações de Rd.
Pérez, Rodríguez Jeinny Nallely. « A study of the problem of time in a Friedmann quantum cosmology ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21716/.
Texte intégralHoltz, Susan Lady. « Liouville resolvent methods applied to highly correlated systems ». Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/49795.
Texte intégralLegoll, Frédéric. « Méthodes moléculaires et multi-échelles pour la simulation numérique des matériaux ». Paris 6, 2004. http://www.theses.fr/2004PA066203.
Texte intégralArmstrong, Craig Keith. « Hamilton-Jacobi Theory and Superintegrable Systems ». The University of Waikato, 2007. http://hdl.handle.net/10289/2340.
Texte intégralIgnesti, Alessandro. « Dinamica dei due e/o pochi corpi : Sistema Solare,Sistemi Binari ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7383/.
Texte intégralEl, Bakkali Larbi. « Voisinage et stabilité des solutions périodiques des systèmes hamiltoniens : application aux solutions de Lagrange du problème des 3 corps ». Observatoire de Paris, 1990. https://hal.archives-ouvertes.fr/tel-02095283.
Texte intégralIn the dynamical systems the study of the vicinity and the stability of a periodic solution begins usually by the “first-order study” of the variational system. The first step leads either to the exponential stability or to the exponential instability or to the “critical case” in which the largest Liapounov characteristic exponent is zero. In this third case it becomes necessary to consider the higher order terms. Most critical cases appear in Hamiltonian, problems and the study of large order terms begins by several simplifications that are presented in chapters I and II. These simplifications lead to the near –resonance theorem and to the adjacent useful notions : quasi-integrals, positive resonances etc … that allow a general classification of the types of stability and instability. The chapters III and IV apply these theoretical results to the Lagrangian motions of the 3-body problem. The results are very different according the case of interest. The restricted circular problem is entirely solved (planar case) or almost entirely solved (three-dimensional case)