Littérature scientifique sur le sujet « Hamiltonian problems »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Hamiltonian problems ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Hamiltonian problems"
Bravyi, S., D. P. DiVincenzo, R. Oliveira et B. M. Terhal. « The complexity of stoquastic local Hamiltonian problems ». Quantum Information and Computation 8, no 5 (mai 2008) : 361–85. http://dx.doi.org/10.26421/qic8.5-1.
Texte intégralElyseeva, Julia. « The Oscillation Numbers and the Abramov Method of Spectral Counting for Linear Hamiltonian Systems ». EPJ Web of Conferences 248 (2021) : 01002. http://dx.doi.org/10.1051/epjconf/202124801002.
Texte intégralPannell, William H. « The intersection between dual potential and sl(2) algebraic spectral problems ». International Journal of Modern Physics A 35, no 32 (20 novembre 2020) : 2050208. http://dx.doi.org/10.1142/s0217751x20502085.
Texte intégralIserles, A., J. M. Sanz-Serna et M. P. Calvo. « Numerical Hamiltonian Problems. » Mathematics of Computation 64, no 211 (juillet 1995) : 1346. http://dx.doi.org/10.2307/2153506.
Texte intégralBassour, Mustapha. « Hamiltonian Polynomial Eigenvalue Problems ». Journal of Applied Mathematics and Physics 08, no 04 (2020) : 609–19. http://dx.doi.org/10.4236/jamp.2020.84047.
Texte intégralSattath, Or, Siddhardh C. Morampudi, Chris R. Laumann et Roderich Moessner. « When a local Hamiltonian must be frustration-free ». Proceedings of the National Academy of Sciences 113, no 23 (19 mai 2016) : 6433–37. http://dx.doi.org/10.1073/pnas.1519833113.
Texte intégralMasanes, Ll, G. Vidal et J. I. Latorre. « Time--optimal Hamiltonian simulation and gate synthesis using homogeneous local unitaries ». Quantum Information and Computation 2, no 4 (juin 2002) : 285–96. http://dx.doi.org/10.26421/qic2.4-2.
Texte intégralZhao, Qi, et Xiao Yuan. « Exploiting anticommutation in Hamiltonian simulation ». Quantum 5 (31 août 2021) : 534. http://dx.doi.org/10.22331/q-2021-08-31-534.
Texte intégralAmodio, P., F. Iavernaro et D. Trigiante. « Symmetric schemes and Hamiltonian perturbations of linear Hamiltonian problems ». Numerical Linear Algebra with Applications 12, no 2-3 (2005) : 171–79. http://dx.doi.org/10.1002/nla.408.
Texte intégralSanz-Serna, J. M. « Symplectic integrators for Hamiltonian problems : an overview ». Acta Numerica 1 (janvier 1992) : 243–86. http://dx.doi.org/10.1017/s0962492900002282.
Texte intégralThèses sur le sujet "Hamiltonian problems"
Pester, Cornelia. « Hamiltonian eigenvalue symmetry for quadratic operator eigenvalue problems ». Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601470.
Texte intégralWatkinson, Laura. « Four Dimensional Variational Data Assimilation for Hamiltonian Problems ». Thesis, University of Reading, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485506.
Texte intégralGroves, Mark David. « Hamiltonian theory and its application to water-wave problems ». Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316842.
Texte intégralKoch, Michael Conrad. « Inverse analysis in geomechanical problems using Hamiltonian Monte Carlo ». Kyoto University, 2020. http://hdl.handle.net/2433/253350.
Texte intégralLignos, Ioannis. « Reconfigurations of combinatorial problems : graph colouring and Hamiltonian cycle ». Thesis, Durham University, 2017. http://etheses.dur.ac.uk/12098/.
Texte intégralGu, Xiang. « Hamiltonian structures and Riemann-Hilbert problems of integrable systems ». Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7677.
Texte intégralRudoy, Mikhail. « Hamiltonian cycle and related problems : vertex-breaking, grid graphs, and Rubik's Cubes ». Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113112.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 123-124).
In this thesis, we analyze the computational complexity of several problems related to the Hamiltonian Cycle problem. We begin by introducing a new problem, which we call Tree-Residue Vertex-Breaking (TRVB). Given a multigraph G some of whose vertices are marked "breakable," TRVB asks whether it is possible to convert G into a tree via a sequence of applications of the vertex-breaking operation: disconnecting the edges at a degree-G breakable vertex by replacing that vertex with G degree-1 vertices. We consider the special cases of TRVB with any combination of the following additional constraints: G must be planar, G must be a simple graph, the degree of every breakable vertex must belong to an allowed list G, and the degree of every unbreakable vertex must belong to an allowed list G. We fully characterize these variants of TRVB as polynomially solvable or NP-complete. The TRVB problem is useful when analyzing the complexity of what could be called single-traversal problems, where some space (i.e., a configuration graph or a grid) must be traversed in a single path or cycle subject to local constraints. When proving such a problem NP-hard, a reduction from TRVB can often be used as a simpler alternative to reducing from a hard variant of Hamiltonian Cycle. Next, we analyze several variants of the Hamiltonian Cycle problem whose complexity was left open in a 2007 paper by Arkin et al [3]. That paper is a systematic study of the complexity of the Hamiltonian Cycle problem on square, triangular, or hexagonal grid graphs, restricted to polygonal, thin, super-thin, degree-bounded, or solid grid graphs. The authors solved many combinations of these problems, proving them either polynomially solvable or NP-complete, but left three combinations open. We prove two of these unsolved combinations to be NP-complete: Hamiltonian Cycle in Square Polygonal Grid Graphs and Hamiltonian Cycle in Hexagonal Thin Grid Graphs. We also consider a new restriction, where the grid graph is both thin and polygonal, and prove that the Hamiltonian Cycle problem then becomes polynomially solvable for square, triangular, and hexagonal grid graphs. Several of these results are shown by application of the TRVB results, demonstrating the usefulness of that problem. Finally, we apply the Square Grid Graph Hamiltonian Cycle problem to close a longstanding open problem: we prove that optimally solving an n x n x n Rubik's Cube is NP-complete. This improves the previous result that optimally solving an n x n x n Rubik's Cube with missing stickers is NP-complete. We prove this result first for the simpler case of the Rubik's Square -- an n x n x 1 generalization of the Rubik's Cube -- and then proceed with a similar but more complicated proof for the Rubik's Cube case.
by Mikhail Rudoy.
M. Eng.
De, Martino Giuseppe. « Multi-Value Numerical Modeling for Special Di erential Problems ». Doctoral thesis, Universita degli studi di Salerno, 2015. http://hdl.handle.net/10556/1982.
Texte intégralThe subject of this thesis is the analysis and development of new numerical methods for Ordinary Di erential Equations (ODEs). This studies are motivated by the fundamental role that ODEs play in applied mathematics and applied sciences in general. In particular, as is well known, ODEs are successfully used to describe phenomena evolving in time, but it is often very di cult or even impossible to nd a solution in closed form, since a general formula for the exact solution has never been found, apart from special cases. The most important cases in the applications are systems of ODEs, whose exact solution is even harder to nd; then the role played by numerical integrators for ODEs is fundamental to many applied scientists. It is probably impossible to count all the scienti c papers that made use of numerical integrators during the last century and this is enough to recognize the importance of them in the progress of modern science. Moreover, in modern research, models keep getting more complicated, in order to catch more and more peculiarities of the physical systems they describe, thus it is crucial to keep improving numerical integrator's e ciency and accuracy. The rst, simpler and most famous numerical integrator was introduced by Euler in 1768 and it is nowadays still used very often in many situations, especially in educational settings because of its immediacy, but also in the practical integration of simple and well-behaved systems of ODEs. Since that time, many mathematicians and applied scientists devoted their time to the research of new and more e cient methods (in terms of accuracy and computational cost). The development of numerical integrators followed both the scienti c interests and the technological progress of the ages during whom they were developed. In XIX century, when most of the calculations were executed by hand or at most with mechanical calculators, Adams and Bashfort introduced the rst linear multistep methods (1855) and the rst Runge- Kutta methods appeared (1895-1905) due to the early works of Carl Runge and Martin Kutta. Both multistep and Runge-Kutta methods generated an incredible amount of research and of great results, providing a great understanding of them and making them very reliable in the numerical integration of a large number of practical problems. It was only with the advent of the rst electronic computers that the computational cost started to be a less crucial problem and the research e orts started to move towards the development of problem-oriented methods. It is probably possible to say that the rst class of problems that needed an ad-hoc numerical treatment was that of sti problems. These problems require highly stable numerical integrators (see Section ??) or, in the worst cases, a reformulation of the problem itself. Crucial contributions to the theory of numerical integrators for ODEs were given in the XX century by J.C. Butcher, who developed a theory of order for Runge-Kutta methods based on rooted trees and introduced the family of General Linear Methods together with K. Burrage, that uni ed all the known families of methods for rst order ODEs under a single formulation. General Linear Methods are multistagemultivalue methods that combine the characteristics of Runge-Kutta and Linear Multistep integrators... [edited by Author]
XIII n.s.
Kang, Jinghong. « The Computational Kleinman-Newton Method in Solving Nonlinear Nonquadratic Control Problems ». Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30435.
Texte intégralPh. D.
Attia, Ahmed Mohamed Mohamed. « Advanced Sampling Methods for Solving Large-Scale Inverse Problems ». Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73683.
Texte intégralPh. D.
Livres sur le sujet "Hamiltonian problems"
Sanz-Serna, J. M., et M. P. Calvo. Numerical Hamiltonian Problems. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4.
Texte intégralP, Calvo M., dir. Numerical Hamiltonian problems. London : Chapman & Hall, 1994.
Trouver le texte intégralGignoux, Claude, et Bernard Silvestre-Brac. Solved Problems in Lagrangian and Hamiltonian Mechanics. Dordrecht : Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2393-3.
Texte intégralBernard, Silvestre-Brac, et SpringerLink (Online service), dir. Solved Problems in Lagrangian and Hamiltonian Mechanics. Dordrecht : Springer Netherlands, 2009.
Trouver le texte intégralClassical mechanics : Systems of particles and Hamiltonian dynamics. New York : Springer, 2003.
Trouver le texte intégralGreiner, Walter. Classical mechanics : Systems of particles and Hamiltonian dynamics. New York : Springer, 2003.
Trouver le texte intégralClassical mechanics : Systems of particles and Hamiltonian dynamics. 2e éd. Heidelberg [Germany] : Springer, 2010.
Trouver le texte intégralNing, Xuanxi. The blocking flow theory and its application to Hamiltonian graph problems. Aachen : Shaker Verlag, 2006.
Trouver le texte intégralLagrangian and Hamiltonian mechanics : Solutions to the exercises. Singapore : World Scientific, 1999.
Trouver le texte intégralMielke, Alexander. Hamiltonian and Lagrangian flows on center manifolds : With applications to elliptic variational problems. Berlin : Springer-Verlag, 1991.
Trouver le texte intégralChapitres de livres sur le sujet "Hamiltonian problems"
Sanz-Serna, J. M., et M. P. Calvo. « Hamiltonian systems ». Dans Numerical Hamiltonian Problems, 1–14. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4_1.
Texte intégralSanz-Serna, J. M., et M. P. Calvo. « Properties of symplectic integrators ». Dans Numerical Hamiltonian Problems, 129–41. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4_10.
Texte intégralSanz-Serna, J. M., et M. P. Calvo. « Generating functions ». Dans Numerical Hamiltonian Problems, 143–53. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4_11.
Texte intégralSanz-Serna, J. M., et M. P. Calvo. « Lie formalism ». Dans Numerical Hamiltonian Problems, 155–64. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4_12.
Texte intégralSanz-Serna, J. M., et M. P. Calvo. « High-order methods ». Dans Numerical Hamiltonian Problems, 165–77. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4_13.
Texte intégralSanz-Serna, J. M., et M. P. Calvo. « Extensions ». Dans Numerical Hamiltonian Problems, 179–88. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4_14.
Texte intégralSanz-Serna, J. M., et M. P. Calvo. « Symplecticness ». Dans Numerical Hamiltonian Problems, 15–23. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4_2.
Texte intégralSanz-Serna, J. M., et M. P. Calvo. « Numerical methods ». Dans Numerical Hamiltonian Problems, 25–39. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4_3.
Texte intégralSanz-Serna, J. M., et M. P. Calvo. « Order conditions ». Dans Numerical Hamiltonian Problems, 41–52. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4_4.
Texte intégralSanz-Serna, J. M., et M. P. Calvo. « Implementation ». Dans Numerical Hamiltonian Problems, 53–68. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4_5.
Texte intégralActes de conférences sur le sujet "Hamiltonian problems"
Cubitt, Toby S., et Ashley Montanaro. « Complexity Classification of Local Hamiltonian Problems ». Dans 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2014. http://dx.doi.org/10.1109/focs.2014.21.
Texte intégralD’Ambrosio, Raffaele, Giuseppe Giordano et Beatrice Paternoster. « Numerical conservation issues for stochastic Hamiltonian problems ». Dans INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0081459.
Texte intégralOlmos, Ivan, Jesus A. Gonzalez et Mauricio Osorio. « Reductions between the Subgraph Isomorphism Problem and Hamiltonian and SAT Problems ». Dans 17th International Conference on Electronics, Communications and Computers (CONIELECOMP'07). IEEE, 2007. http://dx.doi.org/10.1109/conielecomp.2007.30.
Texte intégralBrugnano, Luigi, Felice Iavernaro, Donato Trigiante, Theodore E. Simos, George Psihoyios et Ch Tsitouras. « Hamiltonian BVMs (HBVMs) : A Family of “Drift Free” Methods for Integrating polynomial Hamiltonian problems ». Dans NUMERICAL ANALYSIS AND APPLIED MATHEMATICS : International Conference on Numerical Analysis and Applied Mathematics 2009 : Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241566.
Texte intégralFedorova, A., M. Zeitlin et Z. Parsa. « Symmetry, Hamiltonian problems and wavelets in accelerator physics ». Dans The sixteenth advanced international committee on future accelerators beam dynamics workshop on nonlinear and collective phenomena in beam physics. AIP, 1999. http://dx.doi.org/10.1063/1.58428.
Texte intégralBrugnano, Luigi, Felice Iavernaro, Donato Trigiante, Theodore E. Simos, George Psihoyios et Ch Tsitouras. « Numerical Comparisons among Some Methods for Hamiltonian Problems ». Dans ICNAAM 2010 : International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498391.
Texte intégralZhang, WX. « Study on Complex Geometric Boundary Problems in Hamiltonian system ». Dans 2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME). IEEE, 2020. http://dx.doi.org/10.1109/icedme50972.2020.00146.
Texte intégralBrugnano, Luigi, Gianluca Frasca Caccia et Felice Iavernaro. « Efficient implementation of geometric integrators for separable Hamiltonian problems ». Dans 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013 : ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825598.
Texte intégralHuffman, Emilie F. « Solution to new sign problems with Hamiltonian Lattice Fermions ». Dans The 32nd International Symposium on Lattice Field Theory. Trieste, Italy : Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.214.0058.
Texte intégralChen, X. S., M. H. Lim et D. C. Wunsch. « A Memetic Algorithm configured via a problem solving environment for the Hamiltonian Cycle problems ». Dans 2007 IEEE Congress on Evolutionary Computation. IEEE, 2007. http://dx.doi.org/10.1109/cec.2007.4424821.
Texte intégralRapports d'organisations sur le sujet "Hamiltonian problems"
Libura, Marek. Sensitivity Analysis for Shortest Hamiltonian Path and Traveling Salesman Problems. Fort Belvoir, VA : Defense Technical Information Center, avril 1988. http://dx.doi.org/10.21236/ada197167.
Texte intégralTessarotto, M., Lin Jin Zheng et J. L. Johnson. Hamiltonian approach to the magnetostatic equilibrium problem. Office of Scientific and Technical Information (OSTI), février 1995. http://dx.doi.org/10.2172/10115867.
Texte intégralKyuldjiev, Assen, Vladimir Gerdjikov et Giuseppe Marmo. On Superintegrability of The Manev Problem and its Real Hamiltonian Form. GIQ, 2012. http://dx.doi.org/10.7546/giq-6-2005-262-275.
Texte intégralKyuldjiev, Assen, Vladimir Gerdjikov et Giuseppe Marmo. On the Symmetries of the Manev Problem and Its Real Hamiltonian Form. GIQ, 2012. http://dx.doi.org/10.7546/giq-8-2007-221-233.
Texte intégralMiller, D. L., J. F. Pekny et G. L. Thompson. AN Exact Algorithm for Finding Undirected Hamiltonian Cycles Based on a Two-Matching Problem Relaxation. Fort Belvoir, VA : Defense Technical Information Center, mars 1991. http://dx.doi.org/10.21236/ada237241.
Texte intégralKandrup, H. E., et P. J. Morrison. Hamiltonian structure of the Vlasov-Einstein system and the problem of stability for spherical relativistic star clusters. Office of Scientific and Technical Information (OSTI), novembre 1992. http://dx.doi.org/10.2172/10120708.
Texte intégralKandrup, H. E., et P. J. Morrison. Hamiltonian structure of the Vlasov-Einstein system and the problem of stability for spherical relativistic star clusters. Office of Scientific and Technical Information (OSTI), novembre 1992. http://dx.doi.org/10.2172/6789042.
Texte intégral