Sommaire
Littérature scientifique sur le sujet « Guanylate cyclase activating protein1 »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Guanylate cyclase activating protein1 ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Guanylate cyclase activating protein1"
Pugh, Edward N., Teresa Duda, Ari Sitaramayya et Rameshwar K. Sharma. « Photoreceptor Guanylate Cyclases : A Review ». Bioscience Reports 17, no 5 (1 octobre 1997) : 429–73. http://dx.doi.org/10.1023/a:1027365520442.
Texte intégralYamazaki, Akio, Matsuyo Yamazaki, Russell K. Yamazaki et Jiro Usukura. « Illuminated Rhodopsin Is Required for Strong Activation of Retinal Guanylate Cyclase by Guanylate Cyclase-Activating Proteins† ». Biochemistry 45, no 6 (février 2006) : 1899–909. http://dx.doi.org/10.1021/bi0519396.
Texte intégralHONKAWA, Hanayo, Osamu HISATOMI, Yoshihiro KISHIDA et Fumio TOKUNAGA. « Two Guanylate Cyclase Activating Proteins in Medaka Retina ». Interdisciplinary Information Sciences 8, no 1 (2002) : 25–32. http://dx.doi.org/10.4036/iis.2002.25.
Texte intégralBaehr, Wolfgang, et Krzysztof Palczewski. « Focus on Molecules : Guanylate cyclase-activating proteins (GCAPs) ». Experimental Eye Research 89, no 1 (juin 2009) : 2–3. http://dx.doi.org/10.1016/j.exer.2008.12.016.
Texte intégralPalczewski, Krzysztof, Izabela Sokal et Wolfgang Baehr. « Guanylate cyclase-activating proteins : structure, function, and diversity ». Biochemical and Biophysical Research Communications 322, no 4 (octobre 2004) : 1123–30. http://dx.doi.org/10.1016/j.bbrc.2004.07.122.
Texte intégralSokal, Izabela, Andrei Alekseev et Krzysztof Palczewski. « Photoreceptor guanylate cyclase variants : cGMP production under control. » Acta Biochimica Polonica 50, no 4 (31 décembre 2003) : 1075–95. http://dx.doi.org/10.18388/abp.2003_3633.
Texte intégralRätscho, Nina, Alexander Scholten et Karl-Wilhelm Koch. « Expression profiles of three novel sensory guanylate cyclases and guanylate cyclase-activating proteins in the zebrafish retina ». Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1793, no 6 (juin 2009) : 1110–14. http://dx.doi.org/10.1016/j.bbamcr.2008.12.021.
Texte intégralShahu, Manisha Kumari, Fabian Schuhmann, Alexander Scholten, Ilia A. Solov’yov et Karl-Wilhelm Koch. « The Transition of Photoreceptor Guanylate Cyclase Type 1 to the Active State ». International Journal of Molecular Sciences 23, no 7 (5 avril 2022) : 4030. http://dx.doi.org/10.3390/ijms23074030.
Texte intégralLi, Ning, Robert N. Fariss, Kai Zhang, Annie Otto-Bruc, Francoise Haeseleer, Darin Bronson, Ning Qin et al. « Guanylate-cyclase-inhibitory protein is a frog retinal Ca2+-binding protein related to mammalian guanylate-cyclase-activating proteins ». European Journal of Biochemistry 252, no 3 (15 mars 1998) : 591–99. http://dx.doi.org/10.1046/j.1432-1327.1998.2520591.x.
Texte intégralMarino, Valerio, Giuditta Dal Cortivo, Paolo Enrico Maltese, Giorgio Placidi, Elisa De Siena, Benedetto Falsini, Matteo Bertelli et Daniele Dell’Orco. « Impaired Ca2+ Sensitivity of a Novel GCAP1 Variant Causes Cone Dystrophy and Leads to Abnormal Synaptic Transmission Between Photoreceptors and Bipolar Cells ». International Journal of Molecular Sciences 22, no 8 (14 avril 2021) : 4030. http://dx.doi.org/10.3390/ijms22084030.
Texte intégralThèses sur le sujet "Guanylate cyclase activating protein1"
BONI', FRANCESCO. « GUANYLATE CYCLASE ACTIVATING PROTEIN 1 MONOMER-DIMER EQUILIBRIUM CONTROLLED BY CA2+ OR MG2+ BINDING : HINTS TO UNDERSTAND RETINAL GUANYLATE CYCLASE REGULATION ». Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/839565.
Texte intégralKrylov, Dmitri M. « Guanylyl cyclase activating protein-1 and its regulation of retinal guanylyl cyclases : a study by molecular biological methods and a novel mass spectrometry based method / ». Thesis, Connect to this title online ; UW restricted, 2001. http://hdl.handle.net/1773/9259.
Texte intégralStephen, Ricardo H. « Structural characterization of guanylate cyclase activating proteins, calcium ion-dependent regulators of phototransduction ». Connect to online resource, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3303874.
Texte intégralHwang, Ji-Young. « Biochemical and biophysical studies on guanylate cyclase activating protein 1, a Ca2+-sensor in Phototransduction ». [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962777412.
Texte intégralLópez, del Hoyo Natalia. « Role of Guanylate Cyclase Activating Proteins in photoreceptor cells of the retina in health and disease ». Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/283566.
Texte intégralEn las dos últimas décadas se ha investigado a fondo el papel que juegan las Proteínas Activadoras de Guanilato Ciclasa (GCAPs) en las células fotorreceptor de la retina como proteínas encargadas de regular la actividad de la Guanilato Ciclasa (GC). Sin embargo se sabe poco acerca de: a) ¿Qué determina la distribución de GCAPs en la célula?, b) ¿Qué otras funciones ejercen GCAP1 y GCAP2 en otros compartimentos celulares distintos al segmento sensorial? y c) ¿Cómo dan lugar a muerte celular cuando están mutadas? En este estudio hemos querido encarar estas preguntas. 1. En primer lugar, poseemos un modelo de ratón que expresa una forma mutante de GCAP2 que no une Ca2+ (bEF-GCAP2). A diferencia de otras mutaciones descritas para GCAP1, en que se ha observado que la muerte celular es producida por niveles tóxicos de cGMP, observamos que nuestro modelo produce la muerte celular por otro mecanismo en que GCAP2 se acumula en el segmento interno. Identificamos abundantemente las distintas isoformas de 14-3-3 como interactores diferenciales de bEF-GCAP2, que a su vez está anormalmente fosforilada in vivo. Tras una serie de experimentos para caracterizar esta interacción, proponemos que la fosforilación de GCAP2 y su unión a 14-3-3 retienen a GCAP2 en el segmento interno, y si este mecanismo se sobrecarga por a) mutaciones en GCAP2, b) condiciones de luz que promuevan la acumulación de GCAP2 en su forma libre de Ca2+ en el segmento interno o c) condiciones genéticas que mimeticen los efectos de exposición a luz prolongada, tendría lugar la degeneración de la retina por la formación de agregados debido a la inestabilidad conformacional de GCAP2. 2. En segundo lugar, tras la identificación de la interacción de GCAP2 con RIBEYE (Venkatesan et al. 2010), el componente mayoritario de las cintillas sinápticas de fotorreceptores, realizamos un estudio ultrastructural del papel que puede estar jugando GCAP2 en este compartimento mediante microscopia electrónica y confocal, demostrando la presencia de GCAP1 y GCAP2 en las cintillas sinápticas de bastones. GCAP1 y GCAP2 son prescindibles en el ensamblaje y mantenimiento básico de las cintillas sinápticas, pero la sobreexpresión de GCAP2 en el fenotipo salvaje, que incrementa el ratio GCAP2:GCAP1, promueve el desensamblaje de las cintillas. Proponemos que GCAP2 podría jugar un papel mediando cambios morfológicos en las cintillas sinápticas promovidas por cambios en [Ca2+].
Faria, Wagner Mendes 1972. « Caracterização farmacológica do ativador da guanilato ciclase solúvel, BAY 60-2770, em artéria pulmonar isolada de coelho ». [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/309253.
Texte intégralDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-23T16:27:39Z (GMT). No. of bitstreams: 1 Faria_WagnerMendes_M.pdf: 1252281 bytes, checksum: ad80513967190699e0001046decc7731 (MD5) Previous issue date: 2013
Resumo: Duas classes de medicamentos denominadas estimuladores e ativadores da guanilato ciclase solúvel (GCs) foram desenvolvidas para uso terapêutico em situações patológicas onde há menor formação ou biodisponibilidade NO ou tolerância farmacológica. A GCs é uma enzima heterodímera, composta pelas subunidades alfa (?) e beta (?), nas quais há a presença do grupo prostético heme e que catalisa a conversão da guanosina trifosfato (GTP) em guanosina monofosfato cíclico (GMPc) pela ação do NO. Em situações patológicas o átomo de ferro pode encontrar-se na sua forma oxidada (Fe3+), diminuindo assim a resposta máxima do óxido nítrico (NO). A principal diferença entre os moduladores da GCs é que os ativadores (BAY 58-2667, HMR 1766, BAY 60-2770) atuam de maneira mais eficaz mesmo quando a enzima encontra-se no estado oxidado. O objetivo do presente trabalho foi caracterizar funcionalmente o relaxamento induzido pelo BAY 60-2770 em artéria pulmonar isolada de coelho. O BAY 60-2770 (0,0001-100 ?M) relaxou de maneira potente (10,1 ± 0.04) e eficaz (105 ± 0,9 %) a artéria pulmonar, sendo este efeito significativamente potencializado na presença dos inibidores da GCs (ODQ, 10 ?M, 4,9 vezes), da fosfodiesterase tipo 5 (tadalafil, 100 ?M, 5,6 vezes) ou da sintase de óxido nítrico (LNAME, 100 ?M, 3,0 vezes). A presença do sequestrador de NO, do doador de NO, da indometacina, do bloqueador do canal de potássio ou a remoção endotelial não interferiram no relaxamento induzido pelo BAY 60-2770. A fenilefrina (0,00001-3 mM) e a estimulação elétrica (4-16 Hz) produziram contração dependente da concentração e frequência, respectivamente. Na presença de tetrodotoxina (TTX, 1 ?M) e fentolamina (1 ?M) houve abolição da resposta contrátil a estimulação elétrica, mostrando a liberação neurogênica de catecolamina. Na presença de BAY 60-2770 co-incubado com ODQ uma redução significativa na contração induzida pela estimulação elétrica foi observada. Apesar desta mesma redução ter sido observada na presença do L-NAME, a mesma não foi estatisticamente significante em comparação aos anéis incubados somente com BAY 60-2770 (1 ?M). Nossos resultados mostraram que a oxidação do grupamento heme, a inibição da fosfodiesterase e a ausência do NO favoreceram a resposta relaxante do BAY 60-2770
Abstract: Soluble guanylate cyclase (sGC) stimulators and activators have been developed for use in pathophysiological condition when NO formation or bioavailability are impaired or when NO tolerance gas developed. Soluble guanylate cyclase is a heterodimer enzyme composed by alpha (?) and beta (?) subunits and a prostetic heme group. Soluble guanylate cyclase converts guanosine triphosphate (GTP) into cyclic guanosine monophosphate (GMPc) after nitric oxide (NO) activaton. Under pathophysiological conditions heme can be oxidized (Fe3+), thus reduzing NO efficacy. The main difference between stimulators and activators (BAY 58-2667, BAY 60-2770 and HMR 1766) is that the latter class of drugs is more efficacious when heme is oxidized. The aim of the present study is to characterize the relaxation induced by BAY 60-2770 in isolated pulmonary artery from rabbit. BAY 60-2770 (0.0001-100 ?M) produced concentration dependent relaxation with potency and maxima response values of 10,1 ± 0.04 and 105 ± 0.9%, respectively. The inhibition of sGC (ODQ, 10 ?M) or phosphodiesterase type 5 (tadalafil, 100 ?M) or the nitric oxide synthase (L-NAME, 100 ?M) produced significantly leftward shifts by, approximately, 4.9, 5.4 and 3.0, respectively. The NO-scavenger, the NO-donor, the cyclooxygenase inhibition, the potassium channel blocker or endothelial removal did not interfere on the pharmacological parameters of BAY 60-2770. Phenylephrine (PE, 0.0001- 3 mM) and electrical field stimulation (EFS, 4-16 Hz) induced concentration and frequency dependent-contraction, respectively. Phentolamine (1 ?M) and tetrodotoxin (TTX, 1 ??) practically abolished EFS-induced contraction, showing the neurogenic source of catecholamines. Co-treatment with BAY 60-2770 with ODQ reduced significantly the EFS-induced contraction in comparison with BAY 60- 2770 (1 ?M) alone. Although we have observed a tendency of reduction in the amplitude of contraction when BAY 60-2770 was co-incubated with L-NAME, it was not statistically significant. Therefore, our results showed that the oxidation of heme group, the inhibition of phosphodiesterase and lower levels of NO favoured the relaxing response of BAY 60- 2770 in isolated rabbit pulmonary artery
Mestrado
Farmacologia
Mestre em Farmacologia
Guo, Beichu. « Interaction of PKCbeta with CARMA1 mediates B cell receptor-induced NF-kappaB activation / ». Thesis, Connect to this title online ; UW restricted, 2003. http://hdl.handle.net/1773/8348.
Texte intégralHwang, Ji-Young [Verfasser]. « Biochemical and biophysical studies on guanylate cyclase activating protein 1, a Ca2+-sensor in Phototransduction / vorgelegt von Ji-Young Hwang ». 2001. http://d-nb.info/962777412/34.
Texte intégralChapitres de livres sur le sujet "Guanylate cyclase activating protein1"
Newbold, Richard J., Evelyne C. Deery, Annette M. Payne, Susan E. Wilkie, David M. Hunt et Martin J. Warren. « Guanylate Cyclase Activating Proteins, Guanylate Cyclase and Disease ». Dans Advances in Experimental Medicine and Biology, 411–38. Boston, MA : Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0121-3_25.
Texte intégralBaehr, Wolfgang, Iswari Subbaraya, Wojciech A. Gorczyca et Krzysztof Palczewski. « Guanylate Cyclase-Activating Protein (GCAP) ». Dans Degenerative Diseases of the Retina, 339–47. Boston, MA : Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1897-6_38.
Texte intégralKoch, Karl-Wilhelm. « GCAP (Guanylate Cyclase–Activating Protein) ». Dans Encyclopedia of Signaling Molecules, 2041–45. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_12.
Texte intégralKoch, Karl-Wilhelm. « GCAP (Guanylate Cyclase–Activating Protein) ». Dans Encyclopedia of Signaling Molecules, 1–5. New York, NY : Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_12-1.
Texte intégralMeigs, Thomas E., Alex Lyakhovich, Hoon Shim, Ching-Kang Chen, Denis J. Dupré, Terence E. Hébert, Joe B. Blumer et al. « GCAP (Guanylate Cyclase–Activating Protein) ». Dans Encyclopedia of Signaling Molecules, 769–73. New York, NY : Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_12.
Texte intégralKoch, Karl-Wilhelm. « Target Recognition of Guanylate Cyclase By Guanylate Cyclase-Activating Proteins ». Dans Advances in Experimental Medicine and Biology, 349–60. Boston, MA : Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0121-3_21.
Texte intégralAmes, James B., Mitsuhiko Ikura et Lubert Stryer. « [8] Molecular structure of membrane-targeting calcium sensors in vision : Recoverin and guanylate cyclase-activating protein 2 ». Dans Methods in Enzymology, 121–32. Elsevier, 2000. http://dx.doi.org/10.1016/s0076-6879(00)16720-5.
Texte intégralPal, Biswajit, et Teizo Kitagawa. « Resonance Raman Studies of the Activation Mechanism of Soluble Guanylate Cyclase ». Dans The Smallest Biomolecules : Diatomics and their Interactions with Heme Proteins, 540–63. Elsevier, 2008. http://dx.doi.org/10.1016/b978-044452839-1.50021-8.
Texte intégralSitaramayya, Ari, Nikolay Pozdnyakov, Alexander Margulis et Akiko Yoshida. « [48] Calcium-dependent activation of membrane guanylate cyclase by S100 proteins ». Dans Methods in Enzymology, 730–42. Elsevier, 2000. http://dx.doi.org/10.1016/s0076-6879(00)15878-1.
Texte intégralBecker, Richard C., et Frederick A. Spencer. « Aggrenox and Cilostazol ». Dans Fibrinolytic and Antithrombotic Therapy. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195155648.003.0015.
Texte intégral