Sommaire
Littérature scientifique sur le sujet « Groupe de symétrie de Lie des EDS »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Groupe de symétrie de Lie des EDS ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Thèses sur le sujet "Groupe de symétrie de Lie des EDS"
Ouknine, Anas. « Μοdèles affines généralisées et symétries d'équatiοns aux dérivés partielles ». Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR085.
Texte intégralThis thesis is dedicated to studying the Lie symmetries of a particular class of partialdifferential equations (PDEs), known as the backward Kolmogorov equation. This equa-tion plays a crucial role in financial modeling, particularly in relation to the Longstaff-Schwartz model, which is widely used for pricing options and derivatives.In a broader context, our study focuses on analyzing the Lie symmetries of thebackward Kolmogorov equation by introducing a nonlinear term. This generalization issignificant, as the modified equation is linked to a forward backward stochastic differ-ential equation (FBSDE) through the generalized (nonlinear) Feynman-Kac formula.We also examine the symmetries of this stochastic equation and how the symmetriesof the PDE are connected to those of the BSDE.Finally, we propose a recalculation of the symmetries of the BSDE and FBSDE,adopting a new approach. This approach is distinguished by the fact that the symme-try group acting on time itself depends also on the process Y , which is the solutionof the BSDE. This dependence opens up new perspectives on the interaction betweentemporal symmetries and the solutions of the equations
Al, Sayed Nazir. « Modèles LES invariants par groupes de symétries en écoulements turbulents anisothermes ». Phd thesis, Université de La Rochelle, 2011. http://tel.archives-ouvertes.fr/tel-00605655.
Texte intégralOstellari, Patrick. « Estimations globales du noyau de la chaleur ». Phd thesis, Université Henri Poincaré - Nancy I, 2003. http://tel.archives-ouvertes.fr/tel-00004080.
Texte intégralVerge-Rebêlo, Raphaël. « L'ensemble des EDO d'ordres 2 et 3 invariantes sous SL(2,R) et leur discrétisation préservant les symétries ». Thèse, 2007. http://hdl.handle.net/1866/8029.
Texte intégralPicard, Philippe. « Sur les solutions invariantes et conditionnellement invariantes des équations de la magnétohydrodynamique ». Thèse, 2003. http://hdl.handle.net/1866/14755.
Texte intégralLamothe, Vincent. « Analyse de groupe d’un modèle de la plasticité idéale planaire et sur les solutions en termes d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre ». Thèse, 2013. http://hdl.handle.net/1866/10343.
Texte intégralThe objects under consideration in this thesis are systems of first-order quasilinear equations. In the first part of the thesis, a study is made of an ideal plasticity model from the point of view of the classical Lie point symmetry group. Planar flows are investigated in both the stationary and non-stationary cases. Two new vector fields are obtained. They complete the Lie algebra of the stationary case, and the subalgebras are classified into conjugacy classes under the action of the group. In the non-stationary case, a classification of the Lie algebras admissible under the chosen force is performed. For each type of force, the vector fields are presented. For monogenic forces, the algebra is of the highest possible dimension. Its classification into conjugacy classes is made. The symmetry reduction method is used to obtain explicit and implicit solutions of several types. Some of them can be expressed in terms of one or two arbitrary functions of one variable. Others can be expressed in terms of Jacobi elliptic functions. Many solutions are interpreted physically in order to determine the shape of realistic extrusion dies. In the second part of the thesis, we examine solutions expressed in terms of Riemann invariants for first-order quasilinear systems. The generalized method of characteristics, along with a method based on conditional symmetries for Riemann invariants are extended so as to be applicable to systems in their elliptic regions. The applicability of the methods is illustrated by examples such as non-stationary ideal plasticity for an irrotational flow as well as fluid mechanics equations. A new approach is developed, based on the introduction of rotation matrices which satisfy certain algebraic conditions. It is directly applicable to non-homogeneous and non-autonomous systems. Its efficiency is illustrated by examples which include a system governing the non-linear superposition of waves and particles. The general solution is constructed in explicit form.
Rebelo, Raphaël. « Invariant discretizations of partial differential equations ». Thèse, 2015. http://hdl.handle.net/1866/13724.
Texte intégralAn algorithm discretizing partial differential equations (PDEs) while preserving their Lie symmetries is provided. This is made possible by the use of discrete partial derivatives transforming as their continuous counterparts under the action of local Lie groups. In applications, many PDEs are invariant under the action of Lie point symmetries of infinite dimension designated as Lie pseudo-groups. To extend the invariant discretization method to such equations, a discretization of pseudo-groups is proposed. The pseudo-group action discretization transforms the continuous point symmetries into generalized symmetries in the discrete space. Invariant schemes are then created for a number of PDEs. In all cases, numerical tests demonstrate that invariant schemes are better approximations of their continuous equivalents than standard finite differences.
Livres sur le sujet "Groupe de symétrie de Lie des EDS"
Greiner, Walter. Quantum mechanics, symmetrics. Berlin : Springer-Verlag, 1989.
Trouver le texte intégralMüller, Berndt, et Walter Greiner. Theoretical Physics - Text and Exercise Books : Volume 2 : Quantum Mechanics. Symmetries. Springer, 1991.
Trouver le texte intégralChapitres de livres sur le sujet "Groupe de symétrie de Lie des EDS"
« Chapitre 7. Un groupe de Lie : le groupe orthogonal O(3) ». Dans Groupes de symétrie en physique, 55–64. EDP Sciences, 2022. http://dx.doi.org/10.1051/978-2-7598-2765-7.c009.
Texte intégral