Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Group IV metals.

Articles de revues sur le sujet « Group IV metals »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Group IV metals ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Groysman, Stanislav, Ekaterina Sergeeva, Israel Goldberg et Moshe Kol. « Salophan Complexes of Group IV Metals ». European Journal of Inorganic Chemistry 2005, no 12 (juin 2005) : 2480–85. http://dx.doi.org/10.1002/ejic.200500243.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Passerone, A., M. L. Muolo et D. Passerone. « Wetting of Group IV diborides by liquid metals ». Journal of Materials Science 41, no 16 (18 juillet 2006) : 5088–98. http://dx.doi.org/10.1007/s10853-006-0442-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Verma, M. L., A. Verma et R. P. S. Rathore. « Phase Transitions and Stability of Group IV BCC Metals ». Acta Physica Polonica A 93, no 3 (mars 1998) : 479–89. http://dx.doi.org/10.12693/aphyspola.93.479.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

McMahon, M. I., O. Degtyareva et R. J. Nelmes. « Ba-IV-Type Incommensurate Crystal Structure in Group-V Metals ». Physical Review Letters 85, no 23 (4 décembre 2000) : 4896–99. http://dx.doi.org/10.1103/physrevlett.85.4896.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wheeler, R. G., K. LaiHing, W. L. Wilson et M. A. Duncan. « Growth patterns in binary clusters of Group IV and V metals ». Journal of Chemical Physics 88, no 4 (15 février 1988) : 2831–39. http://dx.doi.org/10.1063/1.454018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Egorov, F. F., O. V. Pshenichnaya, V. E. Matsera et A. A. Mamonova. « Interaction of nitrides of group IV–V transition metals with chromium ». Powder Metallurgy and Metal Ceramics 36, no 3-4 (mars 1997) : 197–202. http://dx.doi.org/10.1007/bf02676090.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Leng, Ji-Dong, Andreas K. Kostopoulos, Liam H. Isherwood, Ana-Maria Ariciu, Floriana Tuna, Iñigo J. Vitórica-Yrezábal, Robin G. Pritchard et al. « Chromium chains as polydentate fluoride ligands for actinides and group IV metals ». Dalton Transactions 47, no 18 (2018) : 6361–69. http://dx.doi.org/10.1039/c8dt00803e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kovalev, D. Yu, A. E. Sytschev, I. D. Kovalev, A. I. Dekhtyar et I. V. Moiseeva. « SHS hydrogenation of group IV metals as studied by time-resolved XRD ». International Journal of Self-Propagating High-Temperature Synthesis 23, no 4 (octobre 2014) : 198–202. http://dx.doi.org/10.3103/s1061386214040062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kul'kova, S. E., et O. N. Muryzhnikova. « Electron and positron characteristics of dioxides of transition metals of group IV ». Russian Physics Journal 36, no 9 (septembre 1993) : 894–99. http://dx.doi.org/10.1007/bf00559005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Yamanaka, Shinsuke, et Masanobu Miyake. « Influence of interstitial elements on hydrogen solubility in the Group IV metals ». Journal of Nuclear Materials 201 (mai 1993) : 134–41. http://dx.doi.org/10.1016/0022-3115(93)90168-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Osińska, J., E. Kłoczko et Z. Gontarz. « Reactions of tellurates(IV) of some 2nd group metals with basic oxides ». Journal of Thermal Analysis 43, no 1 (janvier 1995) : 227–30. http://dx.doi.org/10.1007/bf02635989.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Gai, Zheng, R. G. Zhao, Yi He, Hang Ji, Chuan Hu et W. S. Yang. « Chemisorption of group-III metals on the (111) surface of group-IV semiconductors : In/Ge(111) ». Physical Review B 53, no 3 (15 janvier 1996) : 1539–47. http://dx.doi.org/10.1103/physrevb.53.1539.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Khoruzhaya, V. G. « Interaction of transition metals of group IV with high-melting platinum metals in binary and ternary systems ». Powder Metallurgy and Metal Ceramics 35, no 7-8 (juillet 1996) : 433–40. http://dx.doi.org/10.1007/bf01329236.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Qu, Zhijie, et Joel N. Bregman. « Absorption Line Search through Three Local Group Dwarf Galaxy Halos ». Astrophysical Journal 927, no 2 (1 mars 2022) : 228. http://dx.doi.org/10.3847/1538-4357/ac51df.

Texte intégral
Résumé :
Abstract Dwarf galaxies are missing nearly all of their baryons and metals from the stellar disk, which are presumed to be in a bound halo or expelled beyond the virial radius. The virial temperature for galaxies with M h ∼ 109–1010 M ⊙ is similar to the collisional ionization equilibrium temperature for the C iv ion. We search for UV absorption from C iv in six sightlines toward three dwarf galaxies in the anti-M31 direction and at the periphery of the Local Group (D ≈ 1.3 Mpc; Sextans A, Sextans B, and NGC 3109). The C iv doublet is detected in only one of six sightlines, toward Sextans A, with log N ( C IV ) = 13.06 ± 0.08 . This is consistent with our gaseous halo models, where the halo gas mass is determined by the cooling rate, feedback, and the star formation rate; the inclusion of photoionization is an essential ingredient. This model can also reproduce the higher detection rate of O vi absorption in other dwarf samples (beyond the Local Group), with C iv only detectable within ∼0.5R vir.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Neumann, Gerhard, et C. Tuijn. « Impurity Diffusion : Impurity Diffusion in the BCC ß-Phase of Group IV Metals ». Solid State Phenomena 88 (novembre 2002) : 167–76. http://dx.doi.org/10.4028/www.scientific.net/ssp.88.167.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Petry, W., A. Heiming, J. Trampenau, M. Alba, C. Herzig, H. R. Schober et G. Vogl. « Phonon dispersion of the bcc phase of group-IV metals. I. bcc titanium ». Physical Review B 43, no 13 (1 mai 1991) : 10933–47. http://dx.doi.org/10.1103/physrevb.43.10933.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Trampenau, J., A. Heiming, W. Petry, M. Alba, C. Herzig, W. Miekeley et H. R. Schober. « Phonon dispersion of the bcc phase of group-IV metals. III. bcc hafnium ». Physical Review B 43, no 13 (1 mai 1991) : 10963–69. http://dx.doi.org/10.1103/physrevb.43.10963.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Otrokov, M. M., V. V. Tugushev, A. Ernst, S. A. Ostanin, V. M. Kuznetsov et E. V. Chulkov. « Magnetic ordering in digital alloys of group-IV semiconductors with 3d-transition metals ». Journal of Experimental and Theoretical Physics 112, no 4 (avril 2011) : 625–36. http://dx.doi.org/10.1134/s1063776111030137.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Sergienko, V. S. « Structural characteristics of peroxo complexes of group IV and V transition metals. Review ». Crystallography Reports 49, no 6 (novembre 2004) : 907–29. http://dx.doi.org/10.1134/1.1828134.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Oryshich, I. V., N. E. Poryadchenko et N. P. Brodnikovskii. « High-temperature oxidation of intermetallics formed by group IV transition metals with chromium ». Powder Metallurgy and Metal Ceramics 43, no 9 (septembre 2004) : 497–503. http://dx.doi.org/10.1007/s11106-004-0011-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Oryshich, I. V., N. E. Poryadchenko et N. P. Brodnikovskii. « High-temperature oxidation of intermetallics formed by group IV transition metals with chromium ». Powder Metallurgy and Metal Ceramics 43, no 9-10 (septembre 2004) : 497–503. http://dx.doi.org/10.1007/s11106-005-0012-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Kumar, Dubey Raj, et Singh Avadhesh Pratap. « ChemInform Abstract : Synthetic Routes for Synthesis of Salicylaldiminate Derivatives of Group 4 Metals [Titanium(IV) and Zirconium(IV)] ». ChemInform 46, no 41 (24 septembre 2015) : no. http://dx.doi.org/10.1002/chin.201541239.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Zhang, Yujie, Francisco de Azambuja et Tatjana N. Parac-Vogt. « The forgotten chemistry of group(IV) metals : A survey on the synthesis, structure, and properties of discrete Zr(IV), Hf(IV), and Ti(IV) oxo clusters ». Coordination Chemistry Reviews 438 (juillet 2021) : 213886. http://dx.doi.org/10.1016/j.ccr.2021.213886.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Ghorai, Amitava. « Dependence of Mono-Vacancy Formation Energy on the Parameter of Ashcroft's Potential ». Defect and Diffusion Forum 278 (juillet 2008) : 25–32. http://dx.doi.org/10.4028/www.scientific.net/ddf.278.25.

Texte intégral
Résumé :
We show the calculation of the monovacancy formation energy ( v FH E1 ) for three different group-I monovalent fcc metals (Cu, Ag and Au) and two group-IV tetravalent fcc metals (Pb and Th) use a pseudopotential approach. Ashcroft's empty core model potential (AECMP) and nine different exchange and correlation functions (ECF) are used. The variation of v FH E1 with the parameter c r of AECMP for different ECF shows variations with the metals, and c r is observed to be greater than Bohr radius.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Rudik, Irina S., Olesya N. Katasonova, Olga B. Mokhodoeva, Tatyana A. Maryutina, Boris Ya Spivakov et Igor V. Ilyukhin. « SEPARATION OF P t (IV), P d (II) AND R h (III) FROM CHLORIDE SOLUTIONS BY MULTISTAGE SOLVENT EXTRACTION USING NITROGEN-CONTAINING EXTRACTANTS ». Industrial laboratory. Diagnostics of materials 85, no 4 (15 mai 2019) : 5–10. http://dx.doi.org/10.26896/1028-6861-2019-85-4-5-10.

Texte intégral
Résumé :
The possibility of Pd (II), Pt (IV), and Rh (III) separation from chloride solutions by solvent extraction in rotating coiled columns (RCC) is demonstrated. The reagents most frequently used in extraction of platinum metals were selected as extractants: trioctylamine (TOA), methyltrialkylammonium chloride (MTAA), tributylphosphate (TBP), N, N, N',N'-tetra-re-octyldiglyTOlamide (TODGA). The completeness of extraction of the platinum group metals from individual and mixed hydrochloric acidic and chloride solutions was studied depending on the nature and concentration of the extractant, acidity of the test solutions and other factors. Optimal conditions for the quantitative extraction of metals from model hydrochloric acidic and chloride solutions and subsequent selective separation at the stripping stage are specified. A scheme of multistaged extraction separation of Pd (II), Pt (IV), and Rh (III) from chloride solutions using a 0.05 M solution of MTAA in toluene as a stationary phase in RCC is proposed. The scheme includes extraction of Pd (II) and Pt (IV) ions from a chloride solution (0, 1 M HCl + 30 g/liter NT) into the organic phase with simultaneous separation of Rh(III) remaining in the aqueous phase, and sequential stripping of Pd (II) and Pt (IV) from the organic phase with a 0.01 M solution of thiourea in 0.1 M HCl and a 1 M solution of thiourea in 0.5 M HCl, respectively. The scheme was tested in separation of the platinum group metals from the technological solution of a given composition. The degree of metal extraction with a 0.05 M MTAA solution in toluene and sequential stripping with thiourea solutions is 99.5% for Rh (III), 99.9% for Pd (II), and 97.4% for Pt (IV). The separated water fractions of rhodium and platinum after leaving the column did not contain impurities of other platinum metals whereas the water fraction of palladium contained 0.5% Pt.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Kazakevich, L. A., V. I. Kuznetsov, P. F. Lugakov et A. R. Salmanov. « Radiation Defect Formation in Silicon Doped with Impurities of the Group IV Transition Metals ». Defect and Diffusion Forum 103-105 (janvier 1993) : 287–92. http://dx.doi.org/10.4028/www.scientific.net/ddf.103-105.287.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Kotlyarov, V. I., V. T. Beshkarev, V. E. Kartsev, V. V. Ivanov, A. A. Gasanov, E. A. Yuzhakova, A. V. Samokhin et al. « Production of spherical powders on the basis of group IV metals for additive manufacturing ». Inorganic Materials : Applied Research 8, no 3 (mai 2017) : 452–58. http://dx.doi.org/10.1134/s2075113317030157.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Sherrow, Susan A., L. M. Toth et G. M. Begun. « Raman spectroscopic studies of dioxouranium(2+) association with hydrolytic species of group IV metals ». Inorganic Chemistry 25, no 12 (juin 1986) : 1992–96. http://dx.doi.org/10.1021/ic00232a018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Herzig, C., S. Divinski et Y. Mishin. « Bulk and interface boundary diffusion in group IV hexagonal close-packed metals and alloys ». Metallurgical and Materials Transactions A 33, no 3 (mars 2002) : 765–75. http://dx.doi.org/10.1007/s11661-002-0143-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Ushioda, Tsutomu, Malcolm L. H. Green, Jane Haggitt et Xuefeng Yan. « Synthesis and catalytic properties of ansa-binuclear metallocenes of the Group IV transition metals ». Journal of Organometallic Chemistry 518, no 1-2 (juillet 1996) : 155–66. http://dx.doi.org/10.1016/0022-328x(96)06198-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Braunschweig, Holger, Rainer Dörfler, Jan Mies et Andreas Oechsner. « Sterically Demanding Hetero-Substituted [2]Borametallocenophanes of Group IV Metals : Synthesis, Structure and Reactivity ». Chemistry - A European Journal 17, no 43 (9 septembre 2011) : 12101–7. http://dx.doi.org/10.1002/chem.201101774.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Journal, Baghdad Science. « Comparing Study of The Stability and spectral properties vibrations for some Tellurium (IV) compounds containing cycloctadienyl group by Quantum Mechanical Calculations ». Baghdad Science Journal 10, no 3 (1 septembre 2013) : 1041–49. http://dx.doi.org/10.21123/bsj.10.3.1041-1049.

Texte intégral
Résumé :
Density Functional Theory (DFT) with B3LYP hybrid exchange-correlation functional and 3-21G basis set and semi-empirical methods (PM3) were used to calculate the energies (total energy, binding energy (Eb), molecular orbital energy (EHOMO-ELUMO), heat of formation (?Hf)) and vibrational spectra for some Tellurium (IV) compounds containing cycloctadienyl group which can use as ligands with some transition metals or essential metals of periodic table at optimized geometrical structures.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Matsumoto, Kazuya, Yuto Sezaki, Yuki Hata et Mitsutoshi Jikei. « Selective Recovery of Platinum (IV) from HCl Solutions Using 2-Ethylhexylamine as a Precipitant ». Separations 8, no 4 (1 avril 2021) : 40. http://dx.doi.org/10.3390/separations8040040.

Texte intégral
Résumé :
The selective separation and recovery of specific platinum-group metals (PGMs) from metal mixtures is a significant challenge owing to the similarity of these metals in terms of chemical and physical properties. Among the typical PGMs (Pd, Pt, and Rh), the selective recovery of Pt prior to the recovery of Pd and Rh is in high demand. In this study, we attempted the selective precipitation of Pt(IV) from mixed-metal HCl solutions using 2-ethylhexylamine (2EHA) as a precipitant and achieved the selective precipitation of Pt(IV) from Pd(II) and Rh(III) over a wide range of HCl concentrations. Selective precipitation of Pt(IV) was also achieved from HCl solutions with high levels of base metals, such as Al, Cu, Fe, and Zn. High yields of undegraded 2EHA remaining in the HCl solution after Pt(IV) precipitation were recovered using hydrophobic porous resins. X-ray photoelectron spectroscopy and thermogravimetric measurements revealed that the Pt(IV)-containing precipitate was an ion-pair comprising one [PtCl6]2− and two ammonium cations of 2EHA. The steric hindrance and high hydrophilicity of 2EHA suppressed the formation of Rh(III)- and Pd(II)-containing precipitates, respectively, resulting in the selective precipitation of Pt(IV).
Styles APA, Harvard, Vancouver, ISO, etc.
34

Lugt, W. van der, et W. Geertsma. « Electron transport in liquid metals and alloys ». Canadian Journal of Physics 65, no 3 (1 mars 1987) : 326–47. http://dx.doi.org/10.1139/p87-039.

Texte intégral
Résumé :
This paper deals with a number of selected topics from the field of electric transport properties in liquid metals and alloys. First, some nearly free electron systems are considered; it appears that some problems associated with the properties of liquid Na–Cs alloys and of amalgams are still unsolved. Then, systems exhibiting strong compound formation, particularly alkali–nonalkali alloys with a large electronegativity difference between the components, are reviewed. A qualitative interpretation in terms of chemical-valence rules, based upon our knowledge of the solid state, is given. Next, recently developed theories dealing with transport properties in disordered media are critically discussed. Some models for the interpretation of the alkali – group IV alloys are presented. The basic ideas derived from these models are used also as guidelines for a more qualitative discussion of the alkali – group III and alkali – group V alloy systems.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Batke, Sonja, Malte Sietzen, Hubert Wadepohl et Joachim Ballmann. « A Tripodal Benzylene-Linked Trisamidophosphine Ligand Scaffold : Synthesis and Coordination Chemistry with Group(IV) Metals ». Inorganic Chemistry 53, no 8 (8 avril 2014) : 4144–53. http://dx.doi.org/10.1021/ic500163c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Osawa, Naoki, Seong-Yun Kim, Tatsuya Ito et Hao Wu. « Effect of adding dodecanol as modifier to N,N,N′,N′-tetra-n-hexyl-3,6-dithiaoctane-1,8-diamide silica-based adsorbent on the adsorption behaviors of platinum-group metals and other metals from simulated high-level liquid waste ». Radiochimica Acta 109, no 12 (26 octobre 2021) : 867–76. http://dx.doi.org/10.1515/ract-2021-1060.

Texte intégral
Résumé :
Abstract To adsorb and separate platinum-group metals efficiently from simulated high-level liquid waste, two adsorbents, N,N,N′,N′-tetra-n-hexyl-3,6-dithiaoctane-1,8-diamide (THDTODA)/SiO2-P and (THDTODA + dodecanol)/SiO2-P, were prepared by impregnation of THDTODA with or without dodecanol into macroporous silica/styrene–divinylbenzene copolymer composite particles SiO2-P. The effect of the addition of dodecanol to THDTODA fixed silica-based adsorbents on the separation of platinum-group metals and other metals was evaluated by batch adsorption and chromatographic separation experiments. THDTODA/SiO2-P adsorbed Ru(III) and Rh(III) more than (THDTODA + dodecanol)/SiO2-P did in concentrated HNO3 solution. From the calculated thermodynamic parameters, dodecanol was considered to have little effect on the temperature dependence of the adsorptions of Ru(III), Zr(IV), Mo(VI), and Re(VII) onto the THDTODA adsorbents. Furthermore, in the results of column chromatography experiments, the effects of dodecanol addition on the separation properties were observed for Ru(III), Zr(IV), and Mo(VI), but little effect was observed for Pd(II) and Re(VII).
Styles APA, Harvard, Vancouver, ISO, etc.
37

Jantunen, Kimberly C., Brian L. Scott et Jaqueline L. Kiplinger. « A comparative study of the reactivity of Zr(IV), Hf(IV) and Th(IV) metallocene complexes : Thorium is not a Group IV metal after all ». Journal of Alloys and Compounds 444-445 (octobre 2007) : 363–68. http://dx.doi.org/10.1016/j.jallcom.2007.03.138.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Wong, C. H., E. A. Buntov, A. F. Zatsepin, J. Lyu, R. Lortz, D. A. Zatsepin et M. B. Guseva. « Room temperature p-orbital magnetism in carbon chains and the role of group IV, V, VI, and VII dopants ». Nanoscale 10, no 23 (2018) : 11186–95. http://dx.doi.org/10.1039/c8nr02328j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Malyshev, V. V. « Protective Coatings of High-Melting Compounds of IV–VIA Group Metals Plated from Ionic Melts (Review) ». Protection of Metals 40, no 6 (novembre 2004) : 525–40. http://dx.doi.org/10.1023/b:prom.0000049516.98440.92.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ponyatovskii, E. G., et I. O. Bashkin. « New Phase Transitions in Hydrides of the I-A, III-A, and IV-A Group Metals* ». Zeitschrift für Physikalische Chemie 146, no 2 (janvier 1985) : 137–57. http://dx.doi.org/10.1524/zpch.1985.146.2.137.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Stemshorn, Andrew K., et Yogesh K. Vohra. « Structural stability and compressibility of group IV transition metals-based bulk metallic glasses under high pressure ». Journal of Applied Physics 106, no 4 (15 août 2009) : 046101. http://dx.doi.org/10.1063/1.3204444.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Asabina, Elena, Vladimir Pet'kov, Elena Gobechiya et Urii Kabalov. « Crystal chemistry of complex orthophosphates with framework structure containing group IV d-transition metals and sodium ». Solid State Sciences 10, no 4 (avril 2008) : 377–81. http://dx.doi.org/10.1016/j.solidstatesciences.2007.12.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Adachi, Nozomu, Yoshikazu Todaka, Hiroshi Suzuki et Minoru Umemoto. « Orientation relationship between α-phase and high-pressure ω-phase of pure group IV transition metals ». Scripta Materialia 98 (mars 2015) : 1–4. http://dx.doi.org/10.1016/j.scriptamat.2014.10.029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Rumpf, C., et W. Bensch. « Synthesis and Crystal Structure of New Ternary Chalcogenides of Group IV Metals : K2ZrS4, Rb2ZrS4, and Rb2HfS4 ». Zeitschrift für Naturforschung B 55, no 8 (1 août 2000) : 695–98. http://dx.doi.org/10.1515/znb-2000-0805.

Texte intégral
Résumé :
Abstract The new ternary one-dimensional chain compounds K2ZrS4 , Rb2ZrS4 and Rb2HfS4 were prepared at 350 °C by reacting A2S3 and S with elemental M (A = K, Rb; M = Zr, Hf). They are isostructural, crystallizing in the orthorhombic space group Pbca with Z = 8 . The M atoms are in a distorted octahedral environment of four S2− anions and one S22− unit. The structure consists of infinite anionic chains comprised of edge-sharing M S6 octahedra running parallel to the [001] direction separated by the alkali metal cations. The composition of the chain may be formulated as 1∞[MS4/ 2 (S2)2−]. The two crystallographically independent alkali cations are in eight-and ninefold coordination of S atoms.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Zakharov, V. A., et Yu A. Ryndin. « Surface hydride complexes of group IV transition metals as active sites for polymerization and hydrogenation reactions ». Journal of Molecular Catalysis 56, no 1-3 (novembre 1989) : 183–93. http://dx.doi.org/10.1016/0304-5102(89)80182-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Karsanov, I. V., E. P. Ivakhnenko, V. S. Khandkarova, A. Z. Rubezhov, O. Yu Okhlobystin, V. I. Minkin, A. I. Prokof'ev et M. I. Kabachnik. « Reaction of 1H-1-oxo-2,4,6,8-tetrakis(tert-butyl) phenoxazine with certain group II?IV metals ». Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 36, no 1 (janvier 1987) : 60–64. http://dx.doi.org/10.1007/bf00953846.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Babitsyna, A. A., T. A. Emel’yanova et V. A. Fedorov. « Glass formation in quaternary systems of group I-IV fluorides ». Inorganic Materials 44, no 12 (décembre 2008) : 1378–85. http://dx.doi.org/10.1134/s0020168508120212.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Levitskii, Yu T., et V. I. Palazhchenko. « Polytropy of group IV and VI dopants in bismuth crystals ». Inorganic Materials 36, no 7 (juillet 2000) : 665–67. http://dx.doi.org/10.1007/bf02758417.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Khaenko, B. V., V. V. Kukol', O. A. Gnitetskii et S. V. Sirichenko. « The ordered structures of group IV transition metal monocarbides ». Soviet Powder Metallurgy and Metal Ceramics 29, no 6 (juin 1990) : 474–77. http://dx.doi.org/10.1007/bf00795347.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

DOBROMYSLOV, A. V., et R. V. CHURBAEV. « SYNTHESIS OF NANOCRYSTALLINE AND AMORPHOUS ALLOYS FROM ELEMENTARY POWDERS BY INTENSIVE PLASTIC DEFORMATION UNDER HIGH PRESSURE ». International Journal of Modern Physics B 24, no 06n07 (20 mars 2010) : 722–29. http://dx.doi.org/10.1142/s0217979210064344.

Texte intégral
Résumé :
Transmission electron microscopy is used to study the structure and phase composition of binary zirconium alloys with Group I-VIII metals produced from metal powders via severe plastic torsional deformation under pressure. The metal contents in the initial mixture, the type of reacting metals, and the degree of deformation are found to affect substantially the structure and phase composition of the alloys synthesized. It is found that the tendency of binary zirconium-based alloys to form an amorphous state depends on the position of an alloying metal in the periodic table. An amorphous state is formed in alloys with Group II ( Zn ), III ( Al ), VIII ( Co , Ni ), and I ( Cu ) metals; it is not formed in alloys with Group IV ( Ti ), V (V, Nb ), and VI ( Mo ) metals of the periodic table. Compositions that are close to equiatomic alloys are more favorable for the formation of an amorphous state or the smallest nanograins. In the course of mechanical alloying, high-pressure phases and intermetallic compounds are found to form.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie