Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Grignard reactions.

Articles de revues sur le sujet « Grignard reactions »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Grignard reactions ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Clark, Peter D., Russell S. Mann et Kevin L. Lesage. « Reactions of dimethyl polysulfides with organomagnesium reagents ». Canadian Journal of Chemistry 70, no 1 (1 janvier 1992) : 29–33. http://dx.doi.org/10.1139/v92-006.

Texte intégral
Résumé :
Reactions of a mixture of dimethyl polysulfides (DMPS, CH3SxCH3, x = 3 – 8) with methyl- and phenylmagnesium halides are described. The type of product obtained was dependent on the molar ratio of DMPS to Grignard reagent. When a 6:1 methyl-Grignard to DMPS ratio was used, methanethiol and dimethyl sulfide were the major products obtained after acidification of the reaction mixture. Lesser quantities of methyl-Grignard favored the formation of dimethyl sulfide, dimethyl disulfide, and H2S. Experiments with a 6:1 phenylmagnesium bromide to DMPS ratio produced benzenethiol and phenylmethyl sulfide as major products after acidification. No methanethiol was observed in these experiments. Mixtures of phenylmethyl mono-, di-, and trisulfides and H2S were obtained with a 3:1 Grignard/DMPS molar ratio. From a mechanistic viewpoint, product distributions obtained from reaction of Grignard reagents with DMPS can be explained by the formation of magnesium thiolates that are most readily stabilized by adjacent structures. Experiments using phenyl Grignard reagent in limited supply suggested that the internal sulfur atoms of the polysulfide chains were most reactive. Keywords: organic polysulfides, Grignard reagents.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Strickler, Rick R., John M. Motto, Craig C. Humber et Adrian L. Schwan. « Stereospecific Grignard reactions of cholesteryl 1-alkenesulfinate esters : Application of the Andersen Protocol to the preparation of non-racemic α,β-unsaturated sulfoxides ». Canadian Journal of Chemistry 81, no 6 (1 juin 2003) : 423–30. http://dx.doi.org/10.1139/v03-002.

Texte intégral
Résumé :
Enantiomerically enriched α,β-unsaturated sulfinate esters of (–)-cholesterol undergo stereospecific substitutions at sulfur when treated in benzene at 6°C with Grignard reagents. Sulfoxides with ees of 85–99.5% are obtained when enantiopure sulfinates are used. The substitution reactions proceed with inversion of sulfur configuration. Enantiomerically pure cholesteryl (E)-2-carbomethoxyethenesulfinate is not a suitable reactant under the Grignard reaction conditions. It is suggested that the ester group induces unwanted reactions significantly lowering both the yield and sulfur stereogenicity.Key words: sulfinate, sulfoxide, Grignard reagents, stereospecific, unsaturated.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yorimitsu, Hideki, et Koichiro Oshima. « New synthetic reactions catalyzed by cobalt complexes ». Pure and Applied Chemistry 78, no 2 (1 janvier 2006) : 441–49. http://dx.doi.org/10.1351/pac200678020441.

Texte intégral
Résumé :
Without suffering from β-elimination, cobalt complexes allow cross-coupling reactions of alkyl halides with Grignard reagents. A combination of a cobalt complex and trimethylsilylmethyl Grignard reagent effects Mizoroki-Heck-type reaction of alkyl halide with styrene, which conventional palladium catalysts have never made possible. Cobalt exhibits intriguing catalytic activities on hydrophosphination and allylzincation of alkynes. Silylmethylcobalt reagent is a powerful tool for the synthesis of highly silylated ethenes.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Katritzky, Alan R., Stanislaw Rachwal et Jing Wu. « A versatile method for the N, N-dialkylation of aromatic amines via Grignard reactions on N,N-bis(benzotriazolylmethyl)arylamines ». Canadian Journal of Chemistry 68, no 3 (1 mars 1990) : 456–63. http://dx.doi.org/10.1139/v90-069.

Texte intégral
Résumé :
Grignard reactions of N,N-bis(benzotriazolylmethyl)arylamines afford the corresponding N,N-dialkylarylamines in high yields. Electron-releasing substituents on the aryl ring facilitate the reaction. Arylamines are N,N-dialkylated with two different alkyl groups by a stepwise procedure: N-benzotriazolylmethylation of an amine followed by a Grignard reaction to introduce the first alkyl group, and repetition of the same procedure to introduce the second alkyl group. Grignard reagents derived from 1,4-dihalobutane, upon reaction with N,N-bis(benzotriazolylmethyl)arylamines, give the corresponding N-aryl-hexahydroazepines together with acyclic products. Keywords: azepine, tertiary arylamines.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Terao, Jun, Hirohisa Todo, Hiroyasu Watabe, Aki Ikumi, Yoshiaki Shinohara et Nobuaki Kambe. « Carbon-carbon bond-forming reactions using alkyl fluorides ». Pure and Applied Chemistry 80, no 5 (1 janvier 2008) : 941–51. http://dx.doi.org/10.1351/pac200880050941.

Texte intégral
Résumé :
This account reviews C-C bond formation reactions using alkyl fluorides mostly focusing on the transition-metal-catalyzed reactions. These reactions proceed efficiently under mild conditions by the combined use of Grignard reagents and transition-metal catalysts, such as Ni, Cu, and Zr. It is proposed that ate complex intermediates formed by the reaction of these transition metals with Grignard reagents play important roles as the active catalytic species. Organoaluminun reagents react directly with alkyl fluorides in nonpolar solvents at room temperature to form C-C bonds. These studies demonstrate the practical usefulness of alkyl fluorides in C-C bond formation reactions and provide a promising method for the construction of carbon frameworks employing alkyl fluorides. The scope and limitations, as well as reaction pathways, are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Clough, S., E. Goldman, S. Williams et B. George. « Starting recalcitrant Grignard reactions ». Journal of Chemical Education 63, no 2 (février 1986) : 176. http://dx.doi.org/10.1021/ed063p176.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Li, Chao-Jun, Jianlin Huang, Xi-Jie Dai, Haining Wang, Ning Chen, Wei Wei, Huiying Zeng et al. « An Old Dog with New Tricks : Enjoin Wolff–Kishner Reduction for Alcohol Deoxygenation and C–C Bond Formations ». Synlett 30, no 13 (13 juin 2019) : 1508–24. http://dx.doi.org/10.1055/s-0037-1611853.

Texte intégral
Résumé :
The Wolff–Kishner reduction, discovered in the early 1910s, is a fundamental and effective tool to convert carbonyls into methylenes via deoxygenation under strongly basic conditions. For over a century, numerous valuable chemical products have been synthesized by this classical method. The reaction proceeds via the reversible formation of hydrazone followed by deprotonation with the strong base to give an N-anionic intermediate, which affords the deoxygenation product upon denitrogenation and protonation. By examining the mechanistic pathway of this century old classical carbonyl deoxygenation, we envisioned and subsequently developed two unprecedented new types of chemical transformations: a) alcohol deoxygenation and b) C–C bond formations with various electrophiles including Grignard-type reaction, conjugate addition, olefination, and diverse cross-coupling reactions.1 Introduction2 Background3 Alcohol Deoxygenation3.1 Ir-Catalyzed Alcohol Deoxygenation3.2 Ru-Catalyzed Alcohol Deoxygenation3.3 Mn-Catalyzed Alcohol Deoxygenation4 Grignard-Type Reactions4.1 Ru-Catalyzed Addition of Hydrazones with Aldehydes and Ketones4.2 Ru-Catalyzed Addition of Hydrazone with Imines4.3 Ru-Catalyzed Addition of Hydrazone with CO2 4.4 Fe-Catalyzed Addition of Hydrazones5 Conjugate Addition Reactions5.1 Ru-Catalyzed Conjugate Addition Reactions5.2 Fe-Catalyzed Conjugate Addition Reactions6 Cross-Coupling Reactions6.1 Ni-Catalyzed Negishi-type Coupling6.2 Pd-Catalyzed Tsuji–Trost Alkylation Reaction7 Other Reactions7.1 Olefination7.2 Heck-Type Reaction7.3 Ullmann-Type Reaction8 Conclusion and Outlook
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yang, Yang, et Ji-Woong Lee. « Toward ideal carbon dioxide functionalization ». Chemical Science 10, no 14 (2019) : 3905–26. http://dx.doi.org/10.1039/c8sc05539d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Shen, Lingyi, Yanxia Zhao, Dihua Dai, Ying-Wei Yang, Biao Wu et Xiao-Juan Yang. « Stabilization of Grignard reagents by a pillar[5]arene host – Schlenk equilibria and Grignard reactions ». Chemical Communications 56, no 9 (2020) : 1381–84. http://dx.doi.org/10.1039/c9cc08728a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bell, KH, et LF Mccaffery. « Use of Menthyl 2-Methoxynaphthalene-1-sulfinates in the Andersen Synthesis of Optically Active Sulfoxides. Facile Cleavage by Grignard Reagents of Some Aromatic Methyl Ethers ». Australian Journal of Chemistry 47, no 10 (1994) : 1925. http://dx.doi.org/10.1071/ch9941925.

Texte intégral
Résumé :
The pure crystalline diastereomers (1R,2S,5R)-menthyl (R)- and (S)-2-methoxynaphthalene-1-sulfinate (1b) have been prepared and, by reaction with Grignard reagents (the Andersen procedure), converted into optically active alkyl and aryl 2-methoxynaphthyl sulfoxides in 67-77% yields. Use of an excess of Grignard reagent results in facile O-alkyl cleavage of the methoxy group to the corresponding naphthol or a competing loss of the alkyl- or aryl- sulfinyl group to form 2-methoxynaphthalene. Pure diastereomers of menthyl 2,7- dimethoxynaphthalene-1-sulfinate (2b) and menthyl 4-methoxynaphthalene-1-sulfinate (3b) have also been prepared and their reactions with Grignard reagents have been studied.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Smith, David H. « Grignard Reactions in "Wet" Ether ». Journal of Chemical Education 76, no 10 (octobre 1999) : 1427. http://dx.doi.org/10.1021/ed076p1427.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Delia, Thomas J. « Grignard Reactions Involving Halogenated Pyrimidines ». Journal of Heterocyclic Chemistry 50, no 4 (juillet 2013) : 735–45. http://dx.doi.org/10.1002/jhet.1543.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Desilva, AN, CL Francis et AD Ward. « Grignard Addition Reactions to 1,4-Difunctionalized But-2-ynes ». Australian Journal of Chemistry 46, no 11 (1993) : 1657. http://dx.doi.org/10.1071/ch9931657.

Texte intégral
Résumé :
Trisubstituted alkenes of E geometry have been prepared by anti addition of Grignard reagents to 1,4-difunctionalized but-2-ynes. Addition of primary, secondary and aromatic Grignard reagents to but-2-yne-1,4-diol provided (E)-2-substituted but-2-ene-1,4-diols as major products along with the corresponding 2-substituted buta-2,3-dien-1-ols. Addition of phenylmagnesium bromide to the mono- and di-methyl ethers of but-2-yne-1,4-diol gave 2,3-diphenyl-1,3-diene. Treatment of 4-dimethylaminobut-2-yn-1-ol with primary alkyl and alkenyl Grignard reagents afforded the 2-substituted anti addition product regiospecifically, stereospecifically and in high yield. Reaction of 1-dimethylamino-4-methoxybut-2-yne with butylmagnesium bromide provided only the 3-substituted anti addition product in good yield.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Czaplik, Waldemar Maximilian, Matthias Mayer, Sabine Grupe et Axel Jacobi von Wangelin. « On direct iron-catalyzed cross-coupling reactions ». Pure and Applied Chemistry 82, no 7 (2 mai 2010) : 1545–53. http://dx.doi.org/10.1351/pac-con-09-10-10.

Texte intégral
Résumé :
A new methodology for the direct cross-coupling reaction between aryl halides and alkyl halides under iron catalysis is described. Unlike conventional protocols, the direct cross-coupling obviates the need for the preformation of stoichiometric amounts of Grignard species and thus exhibits a reduced hazard potential. The underlying one-pot reaction involves iron-catalyzed Grignard formation followed by a rapid cross-coupling step. Mechanistic data on the role of N,N,N',N'-tetramethylethylenediamine (TMEDA) as additive, the concentration of intermediates, and the nature of the catalyst species are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Shimizu, Makoto, Iwao Hachiya, Kazuki Ota, Shinya Fukumoto, Taiki Iwase et Isao Mizota. « Umpolung Reactions of α-Tosyloximino Esters in a Flow System ». Synlett 31, no 19 (3 septembre 2020) : 1930–36. http://dx.doi.org/10.1055/s-0040-1707265.

Texte intégral
Résumé :
AbstractAn umpolung reaction of α-tosyloximino esters in a flow system is disclosed. Tandem N,N-dialkylations with two different Grignard reagents gave the desired N,N-dialkylated products in moderate to good yields. In addition, a tandem N,N,C-trialkylation of an α-tosyloximino ester with three different Grignard reagents has been successfully achieved to afford the desired N,N,C-trialkylated product in moderate yield.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Bhat, Balkrishen, et A. P. Bhaduri. « Grignard Reaction of 2-Substituted-3-Cyanoquinolines ». Zeitschrift für Naturforschung B 40, no 7 (1 juillet 1985) : 990–95. http://dx.doi.org/10.1515/znb-1985-0724.

Texte intégral
Résumé :
Abstract Grignard reactions of 2-morpholino and 2-methylthio-3-cyanoquinoline, 2-chloro-3-cyanoquinoline, 2-chloro-3-cyano-6-methoxyquinoline and 2-chloro-3-cyano-7-methylquinoline with alkyl or aryl magnesium halides have been studied. It was found that 2-morpholino and 2-methylthio- 3-cyanoquinolines gave 1,4-addition products followed by rapid aromatisation. 2-Chloro-3- cyanoquinoline with alkyl magnesium halides furnished 1,4-addition products but with aryl magnesium halides 1,4- and 1,2-addition products were obtained. The cyano group of 4-aryl-2-chloro- 3-cyano-1,4-dihydroquinolines was found to participate in the Grignard reaction to yield 1,2- addition products. 2-Chloro-3-cyano-6-m ethoxyquinoline with alkyl and phenyl magnesium halides yielded exclusively 1,4-addition products. Similarly with p-m ethoxyphenyl magnesium bromide, 1,4-addition products were isolated which participated in the Grignard reaction to yield the expected adducts. Unlike the other chloroquinoline derivatives, 2-chloro-3-cyano-7-methylquinoline with alkyl magnesium halide formed 1 ,2-addition products but with aryl magnesium halides, 1,4-addition products were isolated. The 4-alkyl-2-chloro-3-cyano-l,4-dihydroquinolines were unstable as compared to their 4-aryl analogs. A couple of the Grignard reaction products were found to be unstable on activated surface.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Weiss, Hilton M. « Side Reactions in a Grignard Synthesis ». Journal of Chemical Education 76, no 1 (janvier 1999) : 76. http://dx.doi.org/10.1021/ed076p76.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Brown, Bradley B., et Robert A. Volkmann. « Stereoselectivity in 6-halopenicillanate grignard reactions ». Tetrahedron Letters 27, no 14 (janvier 1986) : 1545–48. http://dx.doi.org/10.1016/s0040-4039(00)84308-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Handy, S. « Grignard Reactions in Imidazolium Ionic Liquids ». Synfacts 2006, no 8 (août 2006) : 0827. http://dx.doi.org/10.1055/s-2006-942008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Williams, Lorenzo, Zhongda Zhang, Feng Shao, Patrick J. Carroll et Madeleine M. Joullié. « Grignard reactions to chiral oxazolidine aldehydes ». Tetrahedron 52, no 36 (septembre 1996) : 11673–94. http://dx.doi.org/10.1016/0040-4020(96)00672-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Handy, Scott T. « Grignard Reactions in Imidazolium Ionic Liquids ». Journal of Organic Chemistry 71, no 12 (juin 2006) : 4659–62. http://dx.doi.org/10.1021/jo060536o.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Semenov, V. V., E. Yu Ladilina, T. A. Chesnokova, N. K. Elistratova, Yu A. Kurskii et N. P. Makarenko. « Reactions of methylchlorodisilanes with Grignard reagents ». Russian Chemical Bulletin 44, no 5 (mai 1995) : 927–30. http://dx.doi.org/10.1007/bf00696930.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Kobayashi, Shoji, Keisuke Shibukawa, Yuta Miyaguchi et Araki Masuyama. « Grignard Reactions in Cyclopentyl Methyl Ether ». Asian Journal of Organic Chemistry 5, no 5 (7 mars 2016) : 636–45. http://dx.doi.org/10.1002/ajoc.201600059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

URABE, H., et F. SATO. « ChemInform Abstract : Metal-Catalyzed (Grignard) Reactions ». ChemInform 28, no 4 (4 août 2010) : no. http://dx.doi.org/10.1002/chin.199704303.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Salem, Mohammed A., Moustafa A. Gouda et Ghada G. El-Bana. « Chemistry of 2-(Piperazin-1-yl) Quinoline-3-Carbaldehydes ». Mini-Reviews in Organic Chemistry 19, no 4 (juin 2022) : 480–95. http://dx.doi.org/10.2174/1570193x18666211001124510.

Texte intégral
Résumé :
Abstract: This review described the preparation of 2- chloroquinoline-3-carbaldehyde derivatives 18 through Vilsmeier-Haack formylation of N-arylacetamides and the use of them as a key intermediate for the preparation of 2-(piperazin-1-yl) quinoline-3-carbaldehydes. The synthesis of the 2- (piperazin-1-yl) quinolines derivatives was explained through the following chemical reactions: acylation, sulfonylation, Claisen-Schmidt condensation, 1, 3-dipolar cycloaddition, one-pot multicomponent reactions (MCRs), reductive amination, Grignard reaction and Kabachnik-Field’s reaction.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Zeng, Xiaoming, et Xuefeng Cong. « Chromium-catalyzed transformations with Grignard reagents – new opportunities for cross-coupling reactions ». Organic Chemistry Frontiers 2, no 1 (2015) : 69–72. http://dx.doi.org/10.1039/c4qo00272e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Novakov, I. A., B. S. Orlinson, E. N. Savel"ev, V. N. Urazbaev et Yu B. Monakov. « Reactions of Grignard reagents with 1,3-dicyanoadamantane ». Russian Chemical Bulletin 52, no 9 (septembre 2003) : 2048–51. http://dx.doi.org/10.1023/b:rucb.0000009650.93387.41.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Brook, A. G., Pauline Chiu, John McClenaghnan et Alan J. Lough. « Reactions of stable silenes with Grignard reagents ». Organometallics 10, no 9 (septembre 1991) : 3292–301. http://dx.doi.org/10.1021/om00055a056.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Tskhovrebov, Alexander G., Euro Solari, Rosario Scopelliti et Kay Severin. « Reactions of Grignard Reagents with Nitrous Oxide ». Organometallics 33, no 10 (7 mai 2014) : 2405–8. http://dx.doi.org/10.1021/om500333y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Maiorova, L. P., M. A. Katkova, T. V. Petrovskaya, S. Ya Khorshev et M. N. Bochkarev. « Reactions of pentafluorophenylgermanium hydrides with Grignard reagents ». Russian Chemical Bulletin 45, no 1 (janvier 1996) : 183–85. http://dx.doi.org/10.1007/bf01433759.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Hessel, Günther, Günther Hulzer, Holger Kryk et Wilfried Schmitt. « Investigation for Safer Initiation of Grignard Reactions ». Chemie Ingenieur Technik 73, no 6 (juin 2001) : 611. http://dx.doi.org/10.1002/1522-2640(200106)73:6<611 ::aid-cite6112222>3.0.co;2-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Delia, Thomas J. « ChemInform Abstract : Grignard Reactions Involving Halogenated Pyrimidines ». ChemInform 44, no 42 (1 octobre 2013) : no. http://dx.doi.org/10.1002/chin.201342232.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Jiao, Yinchun, Wenjing Zhao, Shuang Deng, Zilong Tang, Wanqiang Liu, Yichao Wan et Fuqi Zhong. « A one-pot diastereoselective synthesis of 1,3-diols and 1,3,5-triols via cascade reactions of arylalkynyl Grignard reagents with enol esters ». Journal of Chemical Research 44, no 5-6 (4 mars 2020) : 255–66. http://dx.doi.org/10.1177/1747519820908513.

Texte intégral
Résumé :
An efficient cascade reaction has been developed to synthesize a series of 1,3-diols and 1,3,5-triols via reactions of arylalkynyl Grignard reagents with enol esters. The stereoselectivity of reactions and the molecular configurations of the products were confirmed by nuclear magnetic resonance, X-ray diffraction, and high-performance liquid chromatography analysis. A possible reaction mechanism was analyzed with the results indicating that it proceeded through a 1,2-addition/rearrangement and reverse O-acylation to produce the 1,3-diol and via C-acylation to form the 1,3,5-triol.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Bisz, Elwira. « Iron-Catalyzed Cross-Coupling Reactions of Alkyl Grignards with Aryl Chlorobenzenesulfonates ». Molecules 26, no 19 (29 septembre 2021) : 5895. http://dx.doi.org/10.3390/molecules26195895.

Texte intégral
Résumé :
Aryl sulfonate esters are versatile synthetic intermediates in organic chemistry as well as attractive architectures due to their bioactive properties. Herein, we report the synthesis of alkyl-substituted benzenesulfonate esters by iron-catalyzed C(sp2)–C(sp3) cross-coupling of Grignard reagents with aryl chlorides. The method operates using an environmentally benign and sustainable iron catalytic system, employing benign urea ligands. A broad range of chlorobenzenesulfonates as well as challenging alkyl organometallics containing β-hydrogens are compatible with these conditions, affording alkylated products in high to excellent yields. The study reveals that aryl sulfonate esters are the most reactive activating groups for iron-catalyzed alkylative C(sp2)–C(sp3) cross-coupling of aryl chlorides with Grignard reagents.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Cooper, Alasdair K., Megan E. Greaves, William Donohoe, Paul M. Burton, Thomas O. Ronson, Alan R. Kennedy et David J. Nelson. « Inhibition of (dppf)nickel-catalysed Suzuki–Miyaura cross-coupling reactions by α-halo-N-heterocycles ». Chemical Science 12, no 42 (2021) : 14074–82. http://dx.doi.org/10.1039/d1sc04582b.

Texte intégral
Résumé :
Nickel complexes with a dppf ligand can form inactive dinickel(ii) complexes during Suzuki–Miyaura cross-coupling reactions. However, these complexes can react with Grignard reagents in Kumada–Tamao–Corriu cross-coupling reactions.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Berger, Anna Lucia, Karsten Donabauer et Burkhard König. « Photocatalytic carbanion generation from C–H bonds – reductant free Barbier/Grignard-type reactions ». Chemical Science 10, no 48 (2019) : 10991–96. http://dx.doi.org/10.1039/c9sc04987h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Jiang, Wen-Feng, Hui-Long Wang et Zhe-Qi Li. « Improved synthesis of 6-(4-methoxyphenyl)-2,4-dichloro-1,3,5-triazine and 2,4-bis(resorcinyl)-substituted UV light absorbing derivatives ». Journal of Chemical Research 2008, no 11 (novembre 2008) : 664–65. http://dx.doi.org/10.3184/030823408x375142.

Texte intégral
Résumé :
Pure 6-(4-methoxyphenyl)-2,4-dichloro-1,3,5-triazine was synthesised by a method that did not involve the troublesome Grignard reaction of 4-bromo-anisole. A series of bis(resorcinyl) triazine derivatives which can be used as UV light absorbers were subsequently prepared by utilising 6-(4-methoxyphenyl)-2,4-dichloro-1,3,5-triazine as the starting material via alkylation or acid-catalysed addition reactions.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Konrad, David, Bilal Kicin et Dirk Trauner. « Concise Asymmetric Synthesis of Kweichowenol A ». Synlett 30, no 04 (17 décembre 2018) : 383–86. http://dx.doi.org/10.1055/s-0037-1610390.

Texte intégral
Résumé :
An asymmetric 11-step synthesis of the polyoxygenated cyclohexene natural product kweichowenol A from the traditional Chinese medicinal herb Uvaria kweichowesis is reported. The oxygenation pattern was installed on a linear precursor by exploiting the acyclic stereocontrol of the Kiyooka aldol reaction, as well as Cram chelate-controlled Grignard reactions. Ring-closing metathesis and a selective benzoylation then gave the natural product.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Cai, Ming-Zhong, Chun-Yun Peng, Hong Zhao et Jia-Di Huang. « Stereoselective Synthesis of 1,3-enynylselenides via Palladium-Catalysed Cross Coupling Reactions ». Journal of Chemical Research 2002, no 8 (août 2002) : 376–77. http://dx.doi.org/10.3184/030823402103172365.

Texte intégral
Résumé :
( E)-α-Bromovinylselenides undergo a cross coupling reaction with alkynyl Grignard reagents in the presence of tetrakis(triphenylphosphine)palladium(0) in THF at room temperature to afford 1,3-enynylselenides in good yields.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Speight, Isaiah R., et Timothy P. Hanusa. « Exploration of Mechanochemical Activation in Solid-State Fluoro-Grignard Reactions ». Molecules 25, no 3 (28 janvier 2020) : 570. http://dx.doi.org/10.3390/molecules25030570.

Texte intégral
Résumé :
Owing to the strength of the C–F bond, the ‘direct’ preparation of Grignard reagents, i.e., the interaction of elemental magnesium with an organic halide, typically in an ethereal solvent, fails for bulk magnesium and organofluorine compounds. Previously described mechanochemical methods for preparing Grignard reagents have involved ball milling powdered magnesium with organochlorines or bromines. Activation of the C–F bond through a similar route is also possible, however. For example, milling 1- and 2-fluoronaphthalene with an excess of magnesium metal for 2 h, followed by treatment with FeCl3 and additional milling, produces the corresponding binaphthalenes, albeit in low yields (ca. 20%). The yields are independent of the particular isomer involved and are also comparable to the yields from corresponding the bromonaphthalenes. These results may reflect similar charges that reside on the α-carbon in the naphthalenes, as indicated by density functional theory calculations.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Luo, Meiming, Xiaoming Zeng et Jinghua Tang. « Chromium-Catalyzed, Regioselective Cross-Coupling of C–O Bonds by Using Organic Bromides as Reactants ». Synlett 28, no 19 (14 septembre 2017) : 2577–80. http://dx.doi.org/10.1055/s-0036-1588568.

Texte intégral
Résumé :
We report a chromium-catalyzed cross-coupling of C–O bonds with widely accessible organic bromides as reactants for the preparation of ortho-arylated or -alkylated aromatic aldehydes at room temperature. The use of metallic magnesium is essential for the reaction to occur, giving it an advantage over previous reactions involving Grignard reagents that have to be prepared separately from organic halides before the coupling.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Murai, Toshiaki, Yuuki Maekawa, Yuuki Hirai, Kazuma Kuwabara et Mao Minoura. « Phosphonoselenoic acid esters from the reaction between phosphoroselenoyl chlorides and Grignard reagents : synthetic and stereochemical aspects ». RSC Advances 6, no 18 (2016) : 15180–83. http://dx.doi.org/10.1039/c6ra00318d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

KAWANA, Masajiro. « The reactions of sugar derivatives with grignard reagents. » Journal of Synthetic Organic Chemistry, Japan 43, no 3 (1985) : 226–36. http://dx.doi.org/10.5059/yukigoseikyokaishi.43.226.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Yamazaki, Takashi, Tsukasa Terajima et Tomoko Kawasaki-Taskasuka. « Unusual reactions of Grignard reagents toward fluoroalkylated esters ». Tetrahedron 64, no 10 (mars 2008) : 2419–24. http://dx.doi.org/10.1016/j.tet.2008.01.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Miles, William H., Sandra L. Rivera et Jocelyn D. del Rosario. « Diastereoselective reactions of a simple secondary grignard reagent ». Tetrahedron Letters 33, no 3 (janvier 1992) : 305–8. http://dx.doi.org/10.1016/s0040-4039(00)74117-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Chen, Qing-Yun, Dong-Mei Shen et Chao Liu. « Synthesis and Reactions of meso-Triphenylporphyrin Grignard Reagent ». Synlett 2007, no 19 (décembre 2007) : 3068–72. http://dx.doi.org/10.1055/s-2007-992364.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Orchin, Milton. « The Grignard reagent : Preparation, structure, and some reactions ». Journal of Chemical Education 66, no 7 (juillet 1989) : 586. http://dx.doi.org/10.1021/ed066p586.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Stockland, Robert A., Gordon K. Anderson et Nigam P. Rath. « Reactions of [PdX2(dppm)] Complexes with Grignard Reagents ». Organometallics 16, no 23 (novembre 1997) : 5096–101. http://dx.doi.org/10.1021/om970376u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Adrio, Javier, et Juan C. Carretero. « Functionalized Grignard Reagents in Kumada Cross-Coupling Reactions ». ChemCatChem 2, no 11 (16 août 2010) : 1384–86. http://dx.doi.org/10.1002/cctc.201000237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

POLIVIN, YU N., M. E. PANINA, R. A. KARAKHANOV et V. I. KELAREV. « ChemInform Abstract : Diethyl Ether Hydroperoxide in Grignard Reactions. » ChemInform 25, no 26 (19 août 2010) : no. http://dx.doi.org/10.1002/chin.199426088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie