Littérature scientifique sur le sujet « Gravity waves »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Gravity waves ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Gravity waves"
Naciri, Mamoun, et Chiang C. Mei. « Evolution of short gravity waves on long gravity waves ». Physics of Fluids A : Fluid Dynamics 5, no 8 (août 1993) : 1869–78. http://dx.doi.org/10.1063/1.858812.
Texte intégralDias, Frédéric, et Christian Kharif. « NONLINEAR GRAVITY AND CAPILLARY-GRAVITY WAVES ». Annual Review of Fluid Mechanics 31, no 1 (janvier 1999) : 301–46. http://dx.doi.org/10.1146/annurev.fluid.31.1.301.
Texte intégralAkers, Benjamin F., David M. Ambrose et J. Douglas Wright. « Gravity perturbed Crapper waves ». Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences 470, no 2161 (8 janvier 2014) : 20130526. http://dx.doi.org/10.1098/rspa.2013.0526.
Texte intégralBeya, Jose, William Peirson et Michael Banner. « ATTENUATION OF GRAVITY WAVES BY TURBULENCE ». Coastal Engineering Proceedings 1, no 32 (2 février 2011) : 3. http://dx.doi.org/10.9753/icce.v32.waves.3.
Texte intégralKenyon, Kern E. « Frictionless Surface Gravity Waves ». Natural Science 12, no 04 (2020) : 199–201. http://dx.doi.org/10.4236/ns.2020.124017.
Texte intégralSUN, TIEN-YU, et KAI-HUI CHEN. « ON INTERNAL GRAVITY WAVES ». Tamkang Journal of Mathematics 29, no 4 (1 décembre 1998) : 249–69. http://dx.doi.org/10.5556/j.tkjm.29.1998.4254.
Texte intégralVikulin, A. V., A. A. Dolgaya et S. A. Vikulina. « Geodynamic waves and gravity ». Geodynamics & ; Tectonophysics 5, no 1 (2014) : 291–303. http://dx.doi.org/10.5800/gt-2014-5-1-0128.
Texte intégralLonguet-Higgins, M. S. « Bifurcation in gravity waves ». Journal of Fluid Mechanics 151, no -1 (février 1985) : 457. http://dx.doi.org/10.1017/s0022112085001057.
Texte intégralPizzo, Nick E. « Surfing surface gravity waves ». Journal of Fluid Mechanics 823 (16 juin 2017) : 316–28. http://dx.doi.org/10.1017/jfm.2017.314.
Texte intégralSTENFLO, L., et P. K. SHUKLA. « Nonlinear acoustic–gravity waves ». Journal of Plasma Physics 75, no 6 (11 mars 2009) : 841–47. http://dx.doi.org/10.1017/s0022377809007892.
Texte intégralThèses sur le sujet "Gravity waves"
Popat, Nilesh R. « Steep capillary waves on gravity waves ». Thesis, University of Bristol, 1989. http://hdl.handle.net/1983/78695ee9-b923-4374-b70c-6589b4215241.
Texte intégralLeaman, Nye Abigail. « Scattering of internal gravity waves ». Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/238679.
Texte intégralHalliday, Oliver John. « Atmospheric convection and gravity waves ». Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/22414/.
Texte intégralDoherty, Mary Jane. « Focal lengths and gravity waves ». Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/73280.
Texte intégralMICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCH.
Transferred to 1/2 in VHS videotape from 8 mm film.
Includes bibliographical references (leaves 56-57).
Film is composed of tiny photographs which, when projected, sometimes look very much like people and things in the real world. Film, too, cannot be separated from its tools. Aesthetic criticism was, and still is, weighted towards consideration of the life-like tiny photographs. This thesis traces the evolution of film technology in order to establish the point where non- fiction ideology (aesthetics) lost pace with technical innovation - a derailment, so to speak, with nefarious implications for the present-day filmmaker. The emphasis is on lenses - the provocative "camera eye" - and sound recording equipment - which proved to be the rate-limiter of technical advance. This thesis considers two filmmaking solutions to the present malaise; the Standard TV Documentary, and the single-person shooting methodology of former MIT filmmakers, Jeff Kreines and Joel DeMott - both of which, in turn , will be compared to my own response - in the form of a movie, Gravity, which is about the members of an MIT experimental astrophysics laboratory trying to discover gravity waves. A videotape copy of the movie. is included with the thesis paper.
by Mary Jane Doherty.
M.S.V.S.
Mantke, Wolfgang. « Spin and gravity ». Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/27605.
Texte intégralGibson-Wilde, Dorothy E. « Atmospheric gravity waves in constituent distributions / ». Title page, abstract and contents only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phg4516.pdf.
Texte intégralMeza, Valle Claudio Alejandro. « Early detection of extreme waves by acoustic gravity-waves ». Tesis, Universidad de Chile, 2019. http://repositorio.uchile.cl/handle/2250/171084.
Texte intégralExtreme waves generated in the ocean are of high importance because various maritime structures in the world, including ships, are confronted to this type of wave events, both in deep waters and in coastal areas. Some extreme waves correspond to wave phenomena generated in an atypical way in the ocean, also called monster waves, freak waves, rogue waves, extreme waves, solitons etc., since their generation differs from the common waves generated by wind. Assuming a slightly compressible ocean, the generation and analysis of acoustic-gravity waves (AGW or acoustic waves) in the ocean have been the subject of study for some time, because from them it is possible to obtain some information from the gravity wave, in this case a extreme wave that have generated them, and also to know other kind of phenomena induced by these AGW, as is the case of the bottom pressure. In the present work, a mathematical model has been developed which represents the generation and propagation of an extreme wave represented by a pressure change in the surface of the ocean considering compressible fluid, from which the generation and propagation of acoustic waves is induced. Since sound travels at a speed of 1500 m/s in the ocean, these waves arrive first at any observation point, allowing early detection of the extreme wave from the pressure in the oceanic bottom due to propagation of the acoustic wave. The theoretical development and two-dimensional numerical simulations are presented in the document. The implementation of this methodology and its results is relevant in the field of civil and maritime engineering in Chile since its high potential in coastal zones, due to the fact that for some years, the frequency of extreme wave events has been seen increased, and having an alternative detection system for extreme wave events can become a relevant factor in coastal management and natural disasters services. It is important to mention that this type of work has not been developed previously in Chile.
proyectos Centros de Excelencia Basal Conicyt PIA AFB 170001 CMM & UMI-CNRS 2807 y Fondecyt Regular 1171854
Horne, Iribarne Ernesto. « Transport properties of internal gravity waves ». Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1027/document.
Texte intégralInternal waves are produced as a consequence of the dynamic balance between buoyancy and gravity forces when a particle of fluid is vertically displaced in a stably stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves propagation. Furthermore, these two environments stock a vast amount of particles at their boundaries and in their bulk. Therefore, internal waves and particles will inexorably interact in these systems. In this work, exploratory experiments are performed to study wave generated erosive transport of particles. In order to determine a transport threshold, the peculiar properties of internal waves (“critical reflection”) are employed to increase the intensity of the wave field at the boundaries. A method was developed in collaboration with a signal processing team to improve the determination of the wave components involved in near-critical reflection. This method enabled us to compare our experimental results with a theory of critical reflection, showing good agreement and allowing to extrapolate these results to experiments beyond ours and to oceanic conditions. In addition, we study the interaction of internal waves with a column of particles in sedimentation. Two main effects are observed: the column oscillates around an equilibrium position, and it is displaced as a whole. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift of the waves. This effect could also explain the frequency dependence of the displacement
Eckermann, Stephen D. « Atmospheric gravity waves : obsevations and theory / ». Title page, table of contents and abstract only, 1990. http://web4.library.adelaide.edu.au/theses/09PH/09phe1862.pdf.
Texte intégralCopies of author's previously published articles inserted. Includes bibliographical references (leaves 261-288).
Yan, Xiuping. « Satellite observations of atmospheric gravity waves ». Thesis, University of Leicester, 2010. http://hdl.handle.net/2381/7979.
Texte intégralLivres sur le sujet "Gravity waves"
Dastidar, Pranab R. Magneto-gravity. Mumbai : P.R. Dastidar, 2006.
Trouver le texte intégralA, Datta, Sharman R. D et Dryden Flight Research Facility, dir. Lee waves : Benign and malignant. Edwards, Calif : National Aeronautics and Space Administration, Dryden Flight Research Facility, 1993.
Trouver le texte intégralAgnon, Yehuda. Nonlinear diffraction of ocean gravity waves. Woods Hole, Mass : Woods Hole Oceanographic Institution, 1986.
Trouver le texte intégralWilliams, JohnM. Tables of progressive gravity waves. Boston (Mass.) : Pitman Advanced Publishing Program, 1985.
Trouver le texte intégralVanden-Broeck, J. M. Gravity-capillary free-surface flows. New York : Cambridge University Press, 2010.
Trouver le texte intégralN, Hunt J., dir. Gravity waves in water of finite depth. Southampton : Computational Mechanics Publications, 1997.
Trouver le texte intégralVanden-Broeck, J. M. Gravity-capillary free-surface flows. New York : Cambridge University Press, 2010.
Trouver le texte intégralKeeley, J. R. SAR sensitivities to surface gravity waves. Ottawa : Department of Fisheries and Oceans, 1992.
Trouver le texte intégralK, Dutt P., et Langley Research Center, dir. Acoustic gravity waves : A computational approach. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1987.
Trouver le texte intégralRabinovich, A. B. Dlinnye gravitat͡s︡ionnye volny v okeane : Zakhvat, resonans, izluchenie. Sankt-Peterburg : Gidrometeoizdat, 1993.
Trouver le texte intégralChapitres de livres sur le sujet "Gravity waves"
Olbers, Dirk, Jürgen Willebrand et Carsten Eden. « Gravity Waves ». Dans Ocean Dynamics, 179–210. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23450-7_7.
Texte intégralHooke, William H. « Gravity Waves ». Dans Mesoscale Meteorology and Forecasting, 272–88. Boston, MA : American Meteorological Society, 1986. http://dx.doi.org/10.1007/978-1-935704-20-1_12.
Texte intégralManasseh, Richard. « Internal gravity waves ». Dans Fluid Waves, 119–32. Boca Raton : CRC Press, 2021. http://dx.doi.org/10.1201/9780429295263-5.
Texte intégralPărău, Emilian I., et Jean-Marc Vanden-Broeck. « Gravity-Capillary and Flexural-Gravity Solitary Waves ». Dans Nonlinear Water Waves, 183–99. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33536-6_11.
Texte intégralHogan, Peter A., et Dirk Puetzfeld. « ‘Spherical’ Gravity Waves ». Dans SpringerBriefs in Physics, 23–29. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16826-0_4.
Texte intégralPedlosky, Joseph. « Internal Gravity Waves ». Dans Waves in the Ocean and Atmosphere, 59–66. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_7.
Texte intégralSakellariadou, Mairi. « Gravitational Waves ». Dans Modified Gravity and Cosmology, 375–83. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83715-0_25.
Texte intégralMaeder, André. « Transport by Gravity Waves ». Dans Physics, Formation and Evolution of Rotating Stars, 449–72. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76949-1_17.
Texte intégralMiles, Alan J., et B. Roberts. « Magnetoacoustic-Gravity Surface Waves ». Dans Mechanisms of Chromospheric and Coronal Heating, 508–10. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87455-0_84.
Texte intégralHogan, Peter A., et Dirk Puetzfeld. « Plane Fronted Gravity Waves ». Dans SpringerBriefs in Physics, 9–12. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16826-0_2.
Texte intégralActes de conférences sur le sujet "Gravity waves"
AYON-BEATO, ELOY, GASTON GIRIBET et MOKHTAR HASSAINE. « CRITICAL GRAVITY WAVES ». Dans Proceedings of the MG13 Meeting on General Relativity. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814623995_0085.
Texte intégralMochimaru, Yoshihiro. « Gravity-capillary, solitary waves ». Dans RENEWABLE ENERGY SOURCES AND TECHNOLOGIES. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5127488.
Texte intégralRusso, Pedro, Pedro Oliveira, Catarina Sá-Dantas, Filipe Correia et Vasco Almeida. « Faraday Waves Zero Gravity Experiment ». Dans 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.iac-05-a2.p.04.
Texte intégralShafi, Qaisar. « Will Planck Observe Gravity Waves ? » Dans The European Physical Society Conference on High Energy Physics. Trieste, Italy : Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.180.0483.
Texte intégralLehn, Waldemar H., Wayne K. Silvester et David M. Fraser. « Mirages with Atmospheric Gravity Waves ». Dans Light and Color in the Open Air. Washington, D.C. : Optica Publishing Group, 1993. http://dx.doi.org/10.1364/lcoa.1993.thb.3.
Texte intégralLin, Chunshan, et Misao Sasaki. « Resonant Amplification of Primordial Gravitational Waves ». Dans Second LeCosPA International Symposium : Everything about Gravity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813203952_0035.
Texte intégralOnorato, Miguel. « Numerical Simulation Of Surface Gravity Waves ». Dans 28th Conference on Modelling and Simulation. ECMS, 2014. http://dx.doi.org/10.7148/2014-0007.
Texte intégralTrofimov, Evgenii A. « EXPERIMENTAL STUDY OF INTERNAL GRAVITY WAVES ». Dans Science Present and Future : Research Landscape in the 21st century. Иркутск : Федеральное государственное бюджетное учреждение науки "Иркутский научный центр Сибирского отделения Российской академии наук", 2022. http://dx.doi.org/10.54696/isc_49741454.
Texte intégralKim, Eun-jin. « Angular momentum transport by internal gravity waves ». Dans Waves in dusty, solar and space plasmas. AIP, 2000. http://dx.doi.org/10.1063/1.1324948.
Texte intégralLin, Jung-Tai. « Empirical Prediction of Wave Spectrum for Wind-Generated Gravity Waves ». Dans 20th International Conference on Coastal Engineering. New York, NY : American Society of Civil Engineers, 1987. http://dx.doi.org/10.1061/9780872626003.036.
Texte intégralRapports d'organisations sur le sujet "Gravity waves"
Guza, R. T. Surface Gravity Waves And Ambient Microseismic Noise. Fort Belvoir, VA : Defense Technical Information Center, septembre 1992. http://dx.doi.org/10.21236/ada256498.
Texte intégralMuller, Peter. ARI : Internal Gravity Waves at Abrupt Topography. Fort Belvoir, VA : Defense Technical Information Center, janvier 1991. http://dx.doi.org/10.21236/ada266383.
Texte intégralFritts, David C. Nonlinear Spectral Evolution of Atmospheric Gravity Waves. Fort Belvoir, VA : Defense Technical Information Center, novembre 2000. http://dx.doi.org/10.21236/ada387509.
Texte intégralKo, Dong S. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves. Fort Belvoir, VA : Defense Technical Information Center, septembre 2015. http://dx.doi.org/10.21236/ad1013704.
Texte intégralMuller, Peter. Scattering of Internal Gravity Waves at Finite Topography. Fort Belvoir, VA : Defense Technical Information Center, septembre 1997. http://dx.doi.org/10.21236/ada628215.
Texte intégralBottone, Steven. Acoustic-Gravity Waves From Low-Altitude Localized Disturbances. Fort Belvoir, VA : Defense Technical Information Center, mai 1993. http://dx.doi.org/10.21236/ada264804.
Texte intégralMuller, Peter. Scattering of Internal Gravity Waves at Finite Topography. Fort Belvoir, VA : Defense Technical Information Center, septembre 2001. http://dx.doi.org/10.21236/ada624678.
Texte intégralSullivan, Peter P., James C. McWilliams et Chin-Hoh Moeng. Surface Gravity Waves and Coupled Marine Boundary Layers. Fort Belvoir, VA : Defense Technical Information Center, septembre 2001. http://dx.doi.org/10.21236/ada625363.
Texte intégralSilverstein, Eva, et Alexander Westphal. Monodromy in the CMB : Gravity Waves and String Inflation. Office of Scientific and Technical Information (OSTI), mars 2008. http://dx.doi.org/10.2172/926191.
Texte intégralDunkerton, Timothy J. Gravity Waves in the Atmosphere : Instability, Saturation, and Transport. Fort Belvoir, VA : Defense Technical Information Center, novembre 1995. http://dx.doi.org/10.21236/ada303638.
Texte intégral