Articles de revues sur le sujet « Graphene - Photovoltaics »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Graphene - Photovoltaics.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Graphene - Photovoltaics ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Bin, Zihang. « A comparison between the mainstream heterojunction PV studies ». Applied and Computational Engineering 7, no 1 (21 juillet 2023) : 29–34. http://dx.doi.org/10.54254/2755-2721/7/20230327.

Texte intégral
Résumé :
Among the wide range of third-generation photovoltaic power generation technologies, there is a widely used type of photovoltaic - heterojunction photovoltaic cells. Although each of the different types of heterojunction photovoltaics has been studied in depth, no one has considered the direct application of the different types of heterojunction photovoltaics at the application level. This paper introduces the composition and advantages of heterojunction photovoltaic cells, and briefly introduces graphene/n-type amorphous silicon heterojunction photovoltaic, organic compound/inorganic heterojunction photovoltaic, and inorganic/inorganic heterojunction photovoltaic represented by CuO and Zn2O, and summarizes the different photovoltaic conversion efficiencies, preparation methods, and other key information of these cells, and compares these information. In particular, whether the photovoltaic conversion efficiency can reach the shockley-queisser limit is examined. Among them, the photoconversion efficiency of graphene/n-type amorphous silicon heterojunction and simple metal oxide heterojunction was not very satisfactory, and finally the heterojunction PV cell constructed by the byorganic cavity-conducting material led by Graezel et al. was chosen among the different research directions of organic/inorganic heterojunction PV cells. Cavity-conducting material combined with a titanium dioxide nanofilm with adsorbed dye as a relatively ideal heterojunction PV cell for comparison was examined in this paper, which provides a proposal for the commercial development of new heterojunction PV cells in the future.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zibouche, Nourdine, George Volonakis et Feliciano Giustino. « Graphene Oxide/Perovskite Interfaces For Photovoltaics ». Journal of Physical Chemistry C 122, no 29 (juillet 2018) : 16715–26. http://dx.doi.org/10.1021/acs.jpcc.8b03230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Keyvani-Someh, Ehsan, Zachariah Hennighausen, William Lee, Rachna C. K. Igwe, Mohamed Elamine Kramdi, Swastik Kar et Hicham Fenniri. « Organic Photovoltaics with Stacked Graphene Anodes ». ACS Applied Energy Materials 1, no 1 (12 décembre 2017) : 17–21. http://dx.doi.org/10.1021/acsaem.7b00020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Liu, Thomas, Claire Tonnelé, Shen Zhao, Loïc Rondin, Christine Elias, Daniel Medina-Lopez, Hanako Okuno et al. « Vibronic effect and influence of aggregation on the photophysics of graphene quantum dots ». Nanoscale 14, no 10 (2022) : 3826–33. http://dx.doi.org/10.1039/d1nr08279e.

Texte intégral
Résumé :
Graphene quantum dots, atomically precise nanopieces of graphene, are promising nanoobjects with potential applications in various domains such as photovoltaics, quantum light emitters and bio-imaging.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Larsen, Lachlan J., Cameron J. Shearer, Amanda V. Ellis et Joseph G. Shapter. « Solution processed graphene–silicon Schottky junction solar cells ». RSC Advances 5, no 49 (2015) : 38851–58. http://dx.doi.org/10.1039/c5ra03965g.

Texte intégral
Résumé :
Surfactant-assisted exfoliated graphene (SAEG) has been implemented in transparent conducting graphene films which, for the first time, were used to make SAEG–silicon Schottky junctions for photovoltaics.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Petridis, Constantinos, Dimitrios Konios, Minas M. Stylianakis, George Kakavelakis, Maria Sygletou, Kyriaki Savva, Pavlos Tzourmpakis et al. « Solution processed reduced graphene oxide electrodes for organic photovoltaics ». Nanoscale Horizons 1, no 5 (2016) : 375–82. http://dx.doi.org/10.1039/c5nh00089k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yeh, Te-Fu, Chiao-Yi Teng, Liang-Che Chen, Shean-Jen Chen et Hsisheng Teng. « Graphene oxide-based nanomaterials for efficient photoenergy conversion ». Journal of Materials Chemistry A 4, no 6 (2016) : 2014–48. http://dx.doi.org/10.1039/c5ta07780j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ibrayev, N., E. Seliverstova et A. Zhumabekov. « Preparation of graphene nanostructured films for photovoltaics ». IOP Conference Series : Materials Science and Engineering 447 (21 novembre 2018) : 012068. http://dx.doi.org/10.1088/1757-899x/447/1/012068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Cox, Marshall, Alon Gorodetsky, Bumjung Kim, Keun Soo Kim, Zhang Jia, Philip Kim, Colin Nuckolls et Ioannis Kymissis. « Single-layer graphene cathodes for organic photovoltaics ». Applied Physics Letters 98, no 12 (21 mars 2011) : 123303. http://dx.doi.org/10.1063/1.3569601.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Yong, Virginia, et James M. Tour. « Theoretical Efficiency of Nanostructured Graphene-Based Photovoltaics ». Small 6, no 2 (18 janvier 2010) : 313–18. http://dx.doi.org/10.1002/smll.200901364.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Konios, Dimitrios, George Kakavelakis, Costantinos Petridis, Kyriaki Savva, Emmanuel Stratakis et Emmanuel Kymakis. « Highly efficient organic photovoltaic devices utilizing work-function tuned graphene oxide derivatives as the anode and cathode charge extraction layers ». Journal of Materials Chemistry A 4, no 5 (2016) : 1612–23. http://dx.doi.org/10.1039/c5ta09712f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Stylianakis, M. M., D. Konios, G. Kakavelakis, G. Charalambidis, E. Stratakis, A. G. Coutsolelos, E. Kymakis et S. H. Anastasiadis. « Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material ». Nanoscale 7, no 42 (2015) : 17827–35. http://dx.doi.org/10.1039/c5nr05113d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Wang, Jun, Xukai Xin et Zhiqun Lin. « Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics ». Nanoscale 3, no 8 (2011) : 3040. http://dx.doi.org/10.1039/c1nr10425j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Behura, Sanjay K., Chen Wang, Yu Wen et Vikas Berry. « Graphene–semiconductor heterojunction sheds light on emerging photovoltaics ». Nature Photonics 13, no 5 (20 mars 2019) : 312–18. http://dx.doi.org/10.1038/s41566-019-0391-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Tiwari, Sourabh, Anushka Purabgola et Balasubramanian Kandasubramanian. « Functionalised graphene as flexible electrodes for polymer photovoltaics ». Journal of Alloys and Compounds 825 (juin 2020) : 153954. http://dx.doi.org/10.1016/j.jallcom.2020.153954.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Javvaji, Brahmanandam, Pattabhi Ramaiah Budarapu, Marco Paggi, Xiaoying Zhuang et Timon Rabczuk. « Fracture Properties of Graphene-Coated Silicon for Photovoltaics ». Advanced Theory and Simulations 1, no 12 (20 septembre 2018) : 1800097. http://dx.doi.org/10.1002/adts.201800097.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Ali, Alaa Y., Natalie P. Holmes, Mohsen Ameri, Krishna Feron, Mahir N. Thameel, Matthew G. Barr, Adam Fahy et al. « Low-Temperature CVD-Grown Graphene Thin Films as Transparent Electrode for Organic Photovoltaics ». Coatings 12, no 5 (16 mai 2022) : 681. http://dx.doi.org/10.3390/coatings12050681.

Texte intégral
Résumé :
Good conductivity, suitable transparency and uniform layers of graphene thin film can be produced by chemical vapour deposition (CVD) at low temperature and utilised as a transparent electrode in organic photovoltaics. Using chlorobenzene trapped in poly(methyl methacrylate) (PMMA) polymer as the carbon source, growth temperature (Tgrowth) of 600 °C at hydrogen (H2) flow of 75 standard cubic centimetres per minute (sccm) was used to prepare graphene by CVD catalytically on copper (Cu) foil substrates. Through the Tgrowth of 600 °C, we observed and identified the quality of the graphene films, as characterised by Raman spectroscopy. Finally, P3HT (poly (3-hexylthiophene-2, 5-diyl)): PCBM (phenyl-C61-butyric acid methyl ester) bulk heterojunction solar cells were fabricated on graphene-based window electrodes and compared with indium tin oxide (ITO)-based devices. It is interesting to observe that the OPV performance is improved more than 5 fold with increasing illuminated areas, hinting that high resistance between graphene domains can be alleviated by photo generated charges.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Pastuszak, Justyna, et Paweł Węgierek. « Photovoltaic Cell Generations and Current Research Directions for Their Development ». Materials 15, no 16 (12 août 2022) : 5542. http://dx.doi.org/10.3390/ma15165542.

Texte intégral
Résumé :
The purpose of this paper is to discuss the different generations of photovoltaic cells and current research directions focusing on their development and manufacturing technologies. The introduction describes the importance of photovoltaics in the context of environmental protection, as well as the elimination of fossil sources. It then focuses on presenting the known generations of photovoltaic cells to date, mainly in terms of the achievable solar-to-electric conversion efficiencies, as well as the technology for their manufacture. In particular, the third generation of photovoltaic cells and recent trends in its field, including multi-junction cells and cells with intermediate energy levels in the forbidden band of silicon, are discussed. We also present the latest developments in photovoltaic cell manufacturing technology, using the fourth-generation graphene-based photovoltaic cells as an example. An extensive review of the world literature led us to the conclusion that, despite the appearance of newer types of photovoltaic cells, silicon cells still have the largest market share, and research into ways to improve their efficiency is still relevant.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Mosavi, Amirhosein, et Nima E. Gorji. « Brief review on thin films, perovskite solar cells and nanostructure’s applications ». Modern Physics Letters B 34, no 24 (20 août 2020) : 2030003. http://dx.doi.org/10.1142/s0217984920300033.

Texte intégral
Résumé :
In this brief review, we studied the development milestones of thin film photovoltaics (PV) made of CdTe, CIGS, CZTS and perovskite materials and expanded the discussion to the application of graphene and nanotube in the architecture of these devices. Thin film solar cells are alternative for Si-based PVs and reached a comparable performance to Si PVs. However, they mostly suffer from instability in device and performance and thus several research groups considered the application of graphene and nanostructure carbon materials as conductive electrodes of such devices. The stability of such devices has been the main barrier on up-scaling the cell to module level despite the performance being beaten 23% so far. For emerging perovskite solar cells, the main approach of the researchers is to protect the perovskite layer from moisture and humidity degradation by bringing the protective layers such as graphene and nanotubes or carbon deviations into the devices structure. It has been revealed that graphene’s excellent heat dissipation and thermal conductivity can reduce the moisture reaction with perovskite layer which promises device stability at air.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Tian Zhenghao, 田正浩, 司长峰 Si Changfeng, 屈文山 Qu Wenshan, 郭坤平 Guo Kunping, 潘赛虎 Pan Saihu, 高志翔 Gao Zhixiang, 徐韬 Xu Tao et 魏斌 Wei Bin. « High-Performance Organic Photovoltaics Using Solution-Processed Graphene Oxide ». Acta Optica Sinica 37, no 4 (2017) : 0416001. http://dx.doi.org/10.3788/aos201737.0416001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Murray, Ian P., Sylvia J. Lou, Laura J. Cote, Stephen Loser, Cameron J. Kadleck, Tao Xu, Jodi M. Szarko et al. « Graphene Oxide Interlayers for Robust, High-Efficiency Organic Photovoltaics ». Journal of Physical Chemistry Letters 2, no 24 (16 novembre 2011) : 3006–12. http://dx.doi.org/10.1021/jz201493d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lin, Yu-Che, Chung-Hao Chen, Nian-Zu She, Chien-Yao Juan, Bin Chang, Meng-Hua Li, Hao-Cheng Wang et al. « Correction : Twisted-graphene-like perylene diimide with dangling functional chromophores as tunable small-molecule acceptors in binary-blend active layers of organic photovoltaics ». Journal of Materials Chemistry A 9, no 42 (2021) : 24071–72. http://dx.doi.org/10.1039/d1ta90215f.

Texte intégral
Résumé :
Correction for ‘Twisted-graphene-like perylene diimide with dangling functional chromophores as tunable small-molecule acceptors in binary-blend active layers of organic photovoltaics’ by Yu-Che Lin et al., J. Mater. Chem. A, 2021, 9, 20510–20517, DOI: 10.1039/d1ta05697b.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Ho, Po-Hsun, Wei-Chen Lee, Yi-Ting Liou, Ya-Ping Chiu, Yi-Siang Shih, Chun-Chi Chen, Pao-Yun Su et al. « Sunlight-activated graphene-heterostructure transparent cathodes : enabling high-performance n-graphene/p-Si Schottky junction photovoltaics ». Energy & ; Environmental Science 8, no 7 (2015) : 2085–92. http://dx.doi.org/10.1039/c5ee00548e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Agarwal, Vipul, et Kaushik Chatterjee. « Recent advances in the field of transition metal dichalcogenides for biomedical applications ». Nanoscale 10, no 35 (2018) : 16365–97. http://dx.doi.org/10.1039/c8nr04284e.

Texte intégral
Résumé :
Nanosheets of transition metal dichalcogenide (TMDs), the graphene-like two-dimensional (2D) materials, exhibit a unique combination of properties and have attracted enormous research interest for a wide range of applications including catalysis, functional electronics, solid lubrication, photovoltaics, energy materials and most recently in biomedical applications.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Ye, Jian, Xueliang Li, Jianjun Zhao, Xuelan Mei et Qian Li. « Efficient and stable perovskite solar cells based on functional graphene-modified P3HT hole-transporting layer ». RSC Advances 6, no 43 (2016) : 36356–61. http://dx.doi.org/10.1039/c6ra03466g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Dey, Argha, Bhaskar Chandra Das, Asit Baran Biswas, Poulomi Biswas, Abhishek Dhar, Subhasis Roy et Sk Abdul Moyez. « Graphene Co-Doped TiO2 Nanocomposites for Photocatalysis and Photovoltaics Applications ». Indian Journal of Science and Technology 10, no 31 (16 septembre 2017) : 1–6. http://dx.doi.org/10.17485/ijst/2017/v10i31/113878.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Shin, Kyung-Sik, Hanggochnuri Jo, Hyeon-Jin Shin, Won Mook Choi, Jae-Young Choi et Sang-Woo Kim. « High quality graphene-semiconducting oxide heterostructure for inverted organic photovoltaics ». Journal of Materials Chemistry 22, no 26 (2012) : 13032. http://dx.doi.org/10.1039/c2jm00072e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Park, H., S. Chang, X. Zhou, J. Kong, T. Palacios et S. Gradecak. « Flexible Graphene Electrode-Based Organic Photovoltaics with Record-High Efficiency ». ECS Transactions 69, no 14 (2 octobre 2015) : 77–82. http://dx.doi.org/10.1149/06914.0077ecst.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Park, Hyesung, Sehoon Chang, Xiang Zhou, Jing Kong, Tomás Palacios et Silvija Gradečak. « Flexible Graphene Electrode-Based Organic Photovoltaics with Record-High Efficiency ». Nano Letters 14, no 9 (28 août 2014) : 5148–54. http://dx.doi.org/10.1021/nl501981f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Stratakis, Emmanuel, Kyriaki Savva, Dimitrios Konios, Constantinos Petridis et Emmanuel Kymakis. « Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide hole transporting layers ». Nanoscale 6, no 12 (2014) : 6925–31. http://dx.doi.org/10.1039/c4nr01539h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Maurya, Sandeep Kumar, Hazel Rose Galvan, Gaurav Gautam et Xiaojie Xu. « Recent Progress in Transparent Conductive Materials for Photovoltaics ». Energies 15, no 22 (19 novembre 2022) : 8698. http://dx.doi.org/10.3390/en15228698.

Texte intégral
Résumé :
Transparent conducting materials (TCMs) are essential components for a variety of optoelectronic devices, such as photovoltaics, displays and touch screens. In recent years, extensive efforts have been made to develop TCMs with both high electrical conductivity and optical transmittance. Based on material types, they can be mainly categorized into the following classes: metal oxides, metal nanowire networks, carbon-material-based TCMs (graphene and carbon nanotube networks) and conjugated conductive polymers (PEDOT:PSS). This review will discuss the fundamental electrical and optical properties, typical fabrication methods and the applications in solar cells for each class of TCMs and highlight the current challenges and potential future research directions.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Notarianni, Marco, Jinzhang Liu, Kristy Vernon et Nunzio Motta. « Synthesis and applications of carbon nanomaterials for energy generation and storage ». Beilstein Journal of Nanotechnology 7 (1 février 2016) : 149–96. http://dx.doi.org/10.3762/bjnano.7.17.

Texte intégral
Résumé :
The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Litvin, Aleksandr P., Anton A. Babaev, Peter S. Parfenov, Aliaksei Dubavik, Sergei A. Cherevkov, Mikhail A. Baranov, Kirill V. Bogdanov et al. « Ligand-Assisted Formation of Graphene/Quantum Dot Monolayers with Improved Morphological and Electrical Properties ». Nanomaterials 10, no 4 (11 avril 2020) : 723. http://dx.doi.org/10.3390/nano10040723.

Texte intégral
Résumé :
Hybrid nanomaterials based on graphene and PbS quantum dots (QDs) have demonstrated promising applications in optoelectronics. However, the formation of high-quality large-area hybrid films remains technologically challenging. Here, we demonstrate that ligand-assisted self-organization of covalently bonded PbS QDs and reduced graphene oxide (rGO) can be utilized for the formation of highly uniform monolayers. After the post-deposition ligand exchange, these films demonstrated high conductivity and photoresponse. The obtained films demonstrate a remarkable improvement in morphology and charge transport compared to those obtained by the spin-coating method. It is expected that these materials might find a range of applications in photovoltaics and optoelectronics.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Bointon, Thomas H., Saverio Russo et Monica Felicia Craciun. « Is graphene a good transparent electrode for photovoltaics and display applications ? » IET Circuits, Devices & ; Systems 9, no 6 (novembre 2015) : 403–12. http://dx.doi.org/10.1049/iet-cds.2015.0121.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Yan, Xin, Xiao Cui, Binsong Li et Liang-shi Li. « Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics ». Nano Letters 10, no 5 (12 mai 2010) : 1869–73. http://dx.doi.org/10.1021/nl101060h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kim, Jae-Yup, Jang Yeol Lee, Keun-Young Shin, Hansol Jeong, Hae Jung Son, Chul-Ho Lee, Jong Hyuk Park, Sang-Soo Lee, Jeong Gon Son et Min Jae Ko. « Highly crumpled graphene nano-networks as electrocatalytic counter electrode in photovoltaics ». Applied Catalysis B : Environmental 192 (septembre 2016) : 342–49. http://dx.doi.org/10.1016/j.apcatb.2016.04.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Tavakoli, Mohammad Mahdi, Michel Nasilowski, Jiayuan Zhao, Moungi G. Bawendi et Jing Kong. « Efficient Semitransparent CsPbI 3 Quantum Dots Photovoltaics Using a Graphene Electrode ». Small Methods 3, no 12 (13 août 2019) : 1900449. http://dx.doi.org/10.1002/smtd.201900449.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Das, Sonali, Deepak Pandey, Jayan Thomas et Tania Roy. « The Role of Graphene and Other 2D Materials in Solar Photovoltaics ». Advanced Materials 31, no 1 (6 septembre 2018) : 1802722. http://dx.doi.org/10.1002/adma.201802722.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Kalita, Golap, et Masayoshi Umeno. « Synthesis of Graphene and Related Materials by Microwave-Excited Surface Wave Plasma CVD Methods ». AppliedChem 2, no 3 (30 août 2022) : 160–84. http://dx.doi.org/10.3390/appliedchem2030012.

Texte intégral
Résumé :
Several kinds of chemical vapor deposition (CVD) methods have been extensively used in the semiconductor industries for bulk crystal growth, thin film deposition, and nanomaterials synthesis. In this article, we focus on the microwave-excited surface wave plasma CVD (MW-SWP CVD) method for growth of graphene and related materials. The MW-SWP CVD system consisting of waveguide, slot antenna, and dielectric windows is significant for generating high density plasma with low electron temperature, enabling low temperature growth of materials without damaging the surface of base substrates. The synthesis of graphene and hexagonal boron nitride (hBN) films has been achieved on metals, semiconductors, insulators, and dielectric substrates for application in photovoltaics, sensors, batteries, supercapacitors, fuel cells, and various other electronic devices. The details of the synthesis process for graphene films, vertically-oriented graphene, doped-graphene, and hBN films by the MW-SWP CVD method are summarized to understand the growth mechanism, which will enable further development of the plasma CVD process for material synthesis at a low temperature for industrial applications.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Sygletou, M., P. Tzourmpakis, C. Petridis, D. Konios, C. Fotakis, E. Kymakis et E. Stratakis. « Laser induced nucleation of plasmonic nanoparticles on two-dimensional nanosheets for organic photovoltaics ». Journal of Materials Chemistry A 4, no 3 (2016) : 1020–27. http://dx.doi.org/10.1039/c5ta09199c.

Texte intégral
Résumé :
A novel top-down and universal optical technique for the effective decoration of two-dimensional (2D) nanosheets (NS), graphene oxide (GO), boron nitride (BN) and tungsten disulfide (WS2), with noble metallic nanoparticles (NPs) is reported.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Seliverstova, E. V., N. Kh Ibrayev, D. A. Temirbayeva et G. S. Omarova. « Optical properties of ablated graphene oxide in aqueous dispersions ». Bulletin of the Karaganda University. "Physics" Series 99, no 3 (30 septembre 2020) : 6–12. http://dx.doi.org/10.31489/2020ph3/6-12.

Texte intégral
Résumé :
The effect of laser radiation on the structural and optical properties of graphene oxide dispersed in water was studied. It was shown that under laser ablation a significant reduction in the size of graphene oxide sheets can be achieved. In this case, the resulting main parts of particles have a size of about 110–120 nm, and are similar to graphene quantum dots. The Raman spectra indicate the reduction of graphene oxide during laser radiation. The thickness of the formed particles practically was not changed, since the ID/IG ratio has close values. The prepared dispersions of graphene oxide exhibit wide luminescence bands in the region of 400–600 nm with a maximum of about 450 nm and a lifetime of 1.6 ns. It was shown that by laser ablation it is possible to achieve a significant increasing in the luminescent ability of graphene oxide in an aqueous solution. In this case, the luminescence intensity increased by almost 2 times, while the optical density of the solution was increased by only 5 % relative to the initial dispersion. The results can be used to create organic luminescent materials, in optical nanotechnology, as well as in photovoltaics, biophysics and bioimaging.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Konios, Dimitrios, Constantinos Petridis, George Kakavelakis, Maria Sygletou, Kyriaki Savva, Emmanuel Stratakis et Emmanuel Kymakis. « Photovoltaics : Reduced Graphene Oxide Micromesh Electrodes for Large Area, Flexible, Organic Photovoltaic Devices (Adv. Funct. Mater. 15/2015) ». Advanced Functional Materials 25, no 15 (avril 2015) : 2206. http://dx.doi.org/10.1002/adfm.201570101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Haque, Farjana, Md Moshiur Rahman, Md Abdullah Al Mahmud, M. Subbir Reza, Munmun Akter et A. H. M. Zadidul Karim. « Chemically Converted Graphene as a Hole Transport Layer (HTL) Inorganic Photovoltaics (OPVS) ». Engineering International 6, no 1 (10 mai 2018) : 7. http://dx.doi.org/10.18034/ei.v6i1.1085.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Haque, Farjana, Md Moshiur Rahman, Md Abdullah Al Mahmud, M. Subbir Reza, Munmun Akter et A. H. M. Zadidul Karim. « Chemically Converted Graphene as a Hole Transport Layer (HTL) Inorganic Photovoltaics (OPVS) ». Engineering International 6, no 1 (2018) : 7–20. http://dx.doi.org/10.18034/ei.v6i1.170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Giangregorio, M. M., M. Losurdo, G. V. Bianco, E. Dilonardo, P. Capezzuto et G. Bruno. « Synthesis and characterization of plasmon resonant gold nanoparticles and graphene for photovoltaics ». Materials Science and Engineering : B 178, no 9 (mai 2013) : 559–67. http://dx.doi.org/10.1016/j.mseb.2012.10.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Paul, Rajrupa, Nicolas Humblot, Simon Escobar Steinvall, Elias Zsolt Stutz, Shreyas Sanjay Joglekar, Jean-Baptiste Leran, Mahdi Zamani et al. « van der Waals Epitaxy of Earth-Abundant Zn3P2 on Graphene for Photovoltaics ». Crystal Growth & ; Design 20, no 6 (9 avril 2020) : 3816–25. http://dx.doi.org/10.1021/acs.cgd.0c00125.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Mohd Yusoff, Abd Rashid bin, Hyeong Pil Kim et Jin Jang. « High performance organic photovoltaics with zinc oxide and graphene oxide buffer layers ». Nanoscale 6, no 3 (2014) : 1537–44. http://dx.doi.org/10.1039/c3nr04709a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Hu, Long, Deng-Bing Li, Liang Gao, Hua Tan, Chao Chen, Kanghua Li, Min Li et al. « Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics ». Advanced Functional Materials 26, no 12 (5 février 2016) : 1899–907. http://dx.doi.org/10.1002/adfm.201505043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Petridis, Costantinos, George Kakavelakis et Emmanuel Kymakis. « Renaissance of graphene-related materials in photovoltaics due to the emergence of metal halide perovskite solar cells ». Energy & ; Environmental Science 11, no 5 (2018) : 1030–61. http://dx.doi.org/10.1039/c7ee03620e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Sifuentes-Gallardo, C., I. A. Sustaita-Torres, I. Rodríguez-Vargas, J. R. Suárez-López et J. Madrigal-Melchor. « Transmittance and Absorption Properties of Graphene Multilayer Quasi-periodic Structure : Period-Doubling case ». MRS Advances 2, no 49 (2017) : 2781–86. http://dx.doi.org/10.1557/adv.2017.545.

Texte intégral
Résumé :
ABSTRACTGraphene is a two dimensional material of special interest due to its unusual electronic, mechanical, chemical, optical among other properties, which suggest a wide range of applications in optoelectronics, computer, ecology, etc. The study of the optical properties of graphene is important due to its potential applications such as ultrafast photonics, optical filters, composite materials, photovoltaics and energy storage device. In this work we study the transmission and absorption properties of a quasi-regular multilayer dielectric-graphene-dielectric system. The multilayer structure is built on the quasi-regular Period-Doubling (PD) sequence. The optical response of graphene takes into account intra-band and inter-band transitions. We use the transfer-matrix method to calculate the transmission and absorption spectra. It is obtained a strong dependence on the number of layers in the system, the width of dielectric media and the optical contrast. Furthermore, we calculate the spectra for both transverse magnetic (TM) and transverse electric (TE) polarization in the infrared region.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie