Littérature scientifique sur le sujet « Graphene macrostructures »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Graphene macrostructures ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Graphene macrostructures"

1

Yin, Ruilin, Kun Wang, Beibei Han, Guiying Xu, Lixiang Li, Baigang An, Dongying Ju, Maorong Chai, Songnan Li et Weimin Zhou. « Structural Evaluation of Coal-Tar-Pitch-Based Carbon Materials and Their Na+ Storage Properties ». Coatings 11, no 8 (8 août 2021) : 948. http://dx.doi.org/10.3390/coatings11080948.

Texte intégral
Résumé :
Linking to the S element hybrid strategies, S-doped carbon materials having different macrostructures and defect concentrations are prepared by using sulfur and coal-tar-pitch as raw materials in a carbonization temperature range of 700–1000 °C. The evaluations of macrostructure and surface characteristics are performed through XRD, TEM, Raman and XPS measurements. Through the linear fitting among the Na+ storage capacity with ID/IG and d002 values, the correlations of Na+ storage capacity with macrostructures and defects are respectively investigated in detail. It is observed that S-doped carbon materials exhibit storage capacity at 120 mAh/g after the charge-discharge is being carried out 2000 cycles at 2.0 A/g. Studies have shown that adsorptions of introduced defects on graphene-like carbon sheets mainly play the role to enhance the storage capacity, and the expanded carbonaceous lamellar spaces of highly disordered and pseudo-graphitic macrostructures provide the channels for fast transfer of Na+. Our studies are able to provide references for designs and fabrications of coal tar pitch based soft carbon materials as sodium-ion batteries (SIBs) anodes when using heteroatoms doping methods.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhao, Ranran, Ke Li, Runze Liu, Mansoor Sarfraz, Imran Shakir et Yuxi Xu. « Reversible 3D self-assembly of graphene oxide and stimuli-responsive polymers for high-performance graphene-based supercapacitors ». Journal of Materials Chemistry A 5, no 36 (2017) : 19098–106. http://dx.doi.org/10.1039/c7ta05908f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mohd Firdaus, Rabita, Nawal Berrada, Alexandre Desforges, Abdul Rahman Mohamed et Brigitte Vigolo. « From 2D Graphene Nanosheets to 3D Graphene‐based Macrostructures ». Chemistry – An Asian Journal 15, no 19 (4 septembre 2020) : 2902–24. http://dx.doi.org/10.1002/asia.202000747.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cui, Huijuan, Yibo Guo et Zhen Zhou. « Three‐Dimensional Graphene‐Based Macrostructures for Electrocatalysis ». Small 17, no 22 (18 mars 2021) : 2005255. http://dx.doi.org/10.1002/smll.202005255.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Yousefi, Nariman, Xinglin Lu, Menachem Elimelech et Nathalie Tufenkji. « Environmental performance of graphene-based 3D macrostructures ». Nature Nanotechnology 14, no 2 (7 janvier 2019) : 107–19. http://dx.doi.org/10.1038/s41565-018-0325-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wang, Haitao, Xueyue Mi, Yi Li et Sihui Zhan. « 3D Graphene‐Based Macrostructures for Water Treatment ». Advanced Materials 32, no 3 (10 mai 2019) : 1806843. http://dx.doi.org/10.1002/adma.201806843.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chen, Zhangjingzhi, Jun Wang, Xiaoguang Duan, Yuanyuan Chu, Xiaoyao Tan, Shaomin Liu et Shaobin Wang. « Facile fabrication of 3D ferrous ion crosslinked graphene oxide hydrogel membranes for excellent water purification ». Environmental Science : Nano 6, no 10 (2019) : 3060–71. http://dx.doi.org/10.1039/c9en00638a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yu, Zijun, Li Wei, Lun Lu, Yi Shen, Yang Zhang, Jun Wang et Xiaoyao Tan. « Structural Manipulation of 3D Graphene-Based Macrostructures for Water Purification ». Gels 8, no 10 (29 septembre 2022) : 622. http://dx.doi.org/10.3390/gels8100622.

Texte intégral
Résumé :
The rapid development of graphene-based nanotechnologies in recent years has drawn extensive attention in environmental applications, especially for water treatment. Three-dimensional graphene-based macrostructures (GBMs) have been considered to be promising materials for practical water purification due to their well-defined porous structure and integrated morphology, and displayed outstanding performance in pollutant abatement with easy recyclability. Three-dimensional GBMs could not only retain the intrinsic priorities of 2D graphene, but also emerge with extraordinary properties by structural manipulation, so rational design and construction of 3D GBMs with desirable microstructures are important to exploit their potential for water treatment. In this review, some important advances in surface modification (chemical doping, wettability, surface charge) and geometrical control (porous structure, oriented arrangement, shape and density) with respect to 3D GBMs have been described, while their applications in water purification including adsorption (organic pollutants, heavy metal ions), catalysis (photocatalysis, Fenton-like advanced oxidation) and capacitive desalination (CDI) are detailly discussed. Finally, future challenges and prospective for 3D GBMs in water purification are proposed.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Restivo, João, Olívia Salomé Gonçalves Pinto Soares et Manuel Fernando Ribeiro Pereira. « Processing Methods Used in the Fabrication of Macrostructures Containing 1D Carbon Nanomaterials for Catalysis ». Processes 8, no 11 (22 octobre 2020) : 1329. http://dx.doi.org/10.3390/pr8111329.

Texte intégral
Résumé :
A large number of methodologies for fabrication of 1D carbon nanomaterials have been developed in the past few years and are extensively described in the literature. However, for many applications, and in particular in catalysis, a translation of the materials to a macro-structured form is often required towards their use in practical operation conditions. This review intends to describe the available methods currently used for fabrication of such macro-structures, either already applied or with potential for application in the fabrication of macro-structured catalysts containing 1D carbon nanomaterials. A review of the processing methods used in the fabrication of macrostructures containing 1D sp2 hybridized carbon nanomaterials is presented. The carbon nanomaterials here discussed include single- and multi-walled carbon nanotubes, and several types of carbon nanofibers (fishbone, platelet, stacked cup, etc.). As the processing methods used in the fabrication of the macrostructures are generally very similar for any of the carbon nanotubes or nanofibers due to their similar chemical nature (constituted by stacked ordered graphene planes), the review aggregates all under the carbon nanofiber (CNF) moniker. The review is divided into methods where the CNFs are synthesized already in the form of a macrostructure (in situ methods) or where the CNFs are previously synthesized and then further processed into the desired macrostructures (ex situ methods). We highlight in particular the advantages of each approach, including a (non-exhaustive) description of methods commonly described for in situ and ex situ preparation of the catalytic macro-structures. The review proposes methods useful in the preparation of catalytic structures, and thus a number of techniques are left out which are used in the fabrication of CNF-containing structures with no exposure of the carbon materials to reactants due to, for example, complete coverage of the CNF. During the description of the methodologies, several different macrostructures are described. A brief overview of the potential applications of such structures in catalysis is also offered herein, together with a short description of the catalytic potential of CNFs in general.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Singh, Rasmeet, Sajid Ullah, Nikita Rao, Mandeep Singh, Indrajit Patra, Daniel Amoako Darko, C. Prince Jebedass Issac, Keyvan Esmaeilzadeh-Salestani, Rahul Kanaoujiya et V. Vijayan. « Synthesis of Three-Dimensional Reduced-Graphene Oxide from Graphene Oxide ». Journal of Nanomaterials 2022 (3 mars 2022) : 1–18. http://dx.doi.org/10.1155/2022/8731429.

Texte intégral
Résumé :
Carbon materials and their allotropes have been involved significantly in our daily lives. Zero-dimensional (0D) fullerenes, one-dimensional (1D) carbon materials, and two-dimensional (2D) graphene materials have distinctive properties and thus received immense attention from the early 2000s. To meet the growing demand for these materials in applications like energy storage, electrochemical catalysis, and environmental remediation, the special category, i.e., three-dimensional (3D) structures assembled from graphene sheets, has been developed. Graphene oxide is a chemically altered graphene, the desired building block for 3D graphene matter (i.e., 3D graphene macrostructures). A simple synthesis route and pore morphologies make 3D reduced-graphene oxide (rGO) a major candidate for the 3D graphene group. To obtain target-specific 3D rGO, its synthesis mechanism plays an important role. Hence, in this article, we will discuss the general mechanism for 3D rGO synthesis, vital procedures for fabricating advanced 3D rGO, and important aspects controlling the growth of 3D rGO.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Graphene macrostructures"

1

Balasubramanian, Rajasekhar, et Shamik Chowdhury, dir. Graphene-based 3D Macrostructures for Clean Energy and Environmental Applications. Cambridge : Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162480.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Balasubramanian, Rajasekhar, et Shamik Chowdhury. Graphene-Based 3D Macrostructures for Clean Energy and Environmental Applications. Royal Society of Chemistry, The, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Balasubramanian, Rajasekhar, et Shamik Chowdhury. Graphene-Based 3D Macrostructures for Clean Energy and Environmental Applications. Royal Society of Chemistry, The, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Graphene-Based 3D Macrostructures for Clean Energy and Environmental Applications. Royal Society of Chemistry, The, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Graphene macrostructures"

1

Sun, Haiyan, Zhen Xu et Chao Gao. « The Functionalization of Graphene and Its Assembled Macrostructures ». Dans Nanomaterials, Polymers, and Devices, 19–44. Hoboken, NJ, USA : John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118867204.ch2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Horn, Michael R., Suaad A. Alomari, Jennifer MacLeod, Nunzio Motta et Deepak P. Dubal. « CHAPTER 5. Ultrafast Charging Supercapacitors Based on 3D Macrostructures of Graphene and Graphene Oxide ». Dans Chemistry in the Environment, 115–38. Cambridge : Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162480-00115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Chandrasekaran, S., M. R. Cerón et M. A. Worsley. « CHAPTER 1. Engineering the Architecture of 3D Graphene-based Macrostructures ». Dans Chemistry in the Environment, 1–40. Cambridge : Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162480-00001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chandula Wasalathilake, Kimal, et Cheng Yan. « CHAPTER 2. Structure–Property Relationships in 3D Graphene-based Macrostructures ». Dans Chemistry in the Environment, 41–56. Cambridge : Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162480-00041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Yousefi, Nariman. « CHAPTER 11. 3D Graphene-based Macrostructures as Superabsorbents for Oils and Organic Solvents ». Dans Chemistry in the Environment, 296–312. Cambridge : Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162480-00296.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Graphene macrostructures"

1

Phillips, Jonathon, Zayd C. Leseman, Joseph Cordaro, Claudia Luhrs et Marwan Al-Haik. « Novel Graphitic Structures by Design ». Dans ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42977.

Texte intégral
Résumé :
Graphitic Structures by Design (GSD) is a novel technology for growing graphite in precise patterns from the nano to the macroscale, rapidly (>1 layer/sec), at low temperatures (ca. 500°C), and in a single step using ordinary laboratory equipment. The GSD process consists of exposing particular metals (Ni, Pd, Pt, Co), which act as ‘templates’, to a fuel rich combustion environment. As an example, we have thoroughly characterized graphite growth on nickel in a mixture of ethylene and oxygen (O2/C2H4 ratio<3), and found that it grows in a geometry remarkably consistent with the shape of the metal template at a rate of the order one graphene layer/second at temperatures between about 500 and 700°C. Graphite structures created with GSD to date include two dimensional ‘screens’ that are inches in extent, yet are composed of micron scale squares graphite foam, hollow nanoparticles, and micron scale particles. All alternative technologies for graphite growth require specialty equipment, such as 2000 °C + ovens, and multiple steps. The alternatives are also not suited for a wide variety of pattern growth in either two or three dimensions. We propose to change focus from demonstrating GSD to determination of the mechanism of graphite growth. GSD could meet a number of recognized technological needs for future generation integrated circuits (IC). Precise patterns of oriented graphite are envisioned as: i) replacements of carbon fibers as structural elements in some aerospace and transport applications, ii) as heat conductive pathways aiding thermal management in ICs iii) as electrical conduits in ICs, iv) as the basic elements of nano-scale logic circuits. GSD graphite is arguably superior to the older and more broadly studied carbon nanotubes technology for all these IC applications for many reasons: only GSD be grown in any pattern on any surface, GSD is far cleaner (no metal residue in the graphite structure, in contrast to nanotubes), GSD structures can be formed consistently and cheaply, at low temperature, and only GSD can be readily grown into large designed macrostructures required for some heat transfer applications.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie