Sommaire
Littérature scientifique sur le sujet « Graphe acyclique dirigé »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Graphe acyclique dirigé ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Graphe acyclique dirigé"
Lepage, B., S. Lamy, N. Savy et T. Lang. « Utilisation des graphes acycliques dirigés pour le choix d’un modèle d’analyse du changement ». Revue d'Épidémiologie et de Santé Publique 61 (juin 2013) : S108. http://dx.doi.org/10.1016/j.respe.2013.03.007.
Texte intégralThèses sur le sujet "Graphe acyclique dirigé"
Vieira, Milreu Paulo. « Enumerating functional substructures of genome-scale metabolic networks : stories, precursors and organisations ». Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00850704.
Texte intégralLi, Dun. « Optimized blockchain deployment and application for trusted industrial internet of things ». Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAS016.
Texte intégralThe continued advancement of the Industrial Internet of Things (IIoT) presents promising prospects and numerous opportunities for improving the operational frameworks of industrial systems. However, IIoT architectures face significant challenges, including centralized control, vulnerability to cyber attacks, privacy violations, and data accuracy issues.These challenges create significant obstacles in securing data, which is crucial for the growth of this technology. To address these issues, many researchers suggest integrating blockchain technology as a stable means to safeguard data within IIoT systems.Blockchain's features of distributed storage, decentralization, and immutability offer distinct advantages in data secure storage, identity verification, and access control. Despite these benefits, as IIoT applications diversify and data scales expand, the high resource demand of blockchain systems clashes with the limited resources of IIoT devices, leading to unresolved contradictions and persistent issues within this solution. Existing blockchain architectures still lack anonymous and efficient IIoT identity authentication, with complex encryption and decryption processes inducing excessive system overhead. To address these issues, the thesis builds on prior research to optimize blockchain performance, aiming to resolve the shortcomings and bottlenecks in current blockchain-based IIoT architectures regarding data security protection. Firstly, this thesis introduces a lightweight blockchain-enabled protocol designed for secure data storage in the dynamic IIoT environment. It incorporates bilinear mapping for system initialization, entity registration, and authentication technology to authenticate IIoT entities efficiently and securely, along with an off-chain data storage approach to ensure data integrity with reduced resource consumption.Furthermore, the thesis addresses the limitations of Hyperledger fabric systems in high availability scenarios by proposing Trie-Fabric, which enhances transaction processing through a Directed Acyclic Graph (DAG) based transaction sorting algorithm. This approach significantly reduces terminated transactions, optimizes conflict handling, and increases efficiency by more than 60% in its best case, according to comparative experimental results.To manage the increasingly sophisticated industrial processes and privacy-sensitive data generated by IIoT devices, the thesis proposes a smart contract-assisted access control scheme utilizing the Attribute-Based Access Control (ABAC) model.This scheme, supported by bloom filter components, demonstrates controlled contract execution times, stable system throughput, and a rapid consensus process in real-world simulations, making it highly capable of handling high-throughput and effective consensus even under large-scale request scenarios.Lastly, the thesis introduces the Zero-Knowledge Proof (ZKP) algorithm, which integrates a non-interactive zero-knowledge proof protocol with Ciphertext-Policy Attribute-Based Encryption (CP-ABE) to enhance security and efficiency in IIoT content distribution. Combined with the Distributed Publish-Subscribe IIoT (DPS-IIoT) system using Hyperledger fabric, it significantly improves bandwidth efficiency and overall throughput in IIoT environments.Through comprehensive security performance evaluations and experimental results, this research confirms the protocols' effectiveness in minimizing system overhead, improving storage reliability, and enhancing overall IIoT data management and application security. This thesis provides an in-depth examination of advanced data management protocols and systems for the IIoT, which are crucial for advancing the manufacturing sector. Consequently, this work makes a significant contribution to the field of IIoT data security, offering scalable and robust solutions for current and future industrial systems
Benabderrahmane, Sidahmed. « Prise en compte des connaissances du domaine dans l'analyse transcriptomique : Similarité sémantique, classification fonctionnelle et profils flous : application au cancer colorectal ». Phd thesis, Université Henri Poincaré - Nancy I, 2011. http://tel.archives-ouvertes.fr/tel-00653169.
Texte intégralBenabderrahmane, Sidahmed. « Prise en compte des connaissances du domaine dans l'analyse transcriptomique : Similarité sémantique, classification fonctionnelle et profils flous : application au cancer colorectal ». Electronic Thesis or Diss., Nancy 1, 2011. http://www.theses.fr/2011NAN10097.
Texte intégralBioinformatic analyses of transcriptomic data aims to identify genes with variations in their expression level in different tissue samples, for example tissues from healthy versus seek patients, and to characterize these genes on the basis of their functional annotation. In this thesis, I present four contributions for taking into account domain knowledge in these methods. Firstly, I define a new semantic and functional similarity measure which optimally exploits functional annotations from Gene Ontology (GO). Then, I show, thanks to a rigorous evaluation method, that this measure is efficient for the functional classification of genes. In the third contribution, I propose a differential approach with fuzzy assignment for building differential expression profiles (DEPs). I define an algorithm for analyzing overlaps between functional clusters and reference sets such as DEPs here, in order to point out genes that have both similar functional annotation and similar variations in expression. This method is applied to experimental data produced from samples of healthy tissue, colorectal tumor and cancerous cultured cell line. Finally the similarity measure IntelliGO is generalized to another structured vocabulary organized as GO as a rooted directed acyclic graph, with an application concerning the semantic reduction of attributes before mining
Lepage, Benoît. « Prise en compte des hypothèses de causalité dans l'analyse d'une évolution et l'analyse de la médiation ». Toulouse 3, 2013. http://www.theses.fr/2013TOU30098.
Texte intégralThe work reported in this manuscript is based on a structural causal model described by Pearl as the combination of features of the potential outcome framework of Rubin, path analysis and structural equation modelling, and nonparametric structural models which can be represented by directed acyclic graphs (DAGs). We considered change from baseline analyses and mediation analyses within this structural causal model. When estimating the causal effect of an exposure of interest (E) on change from baseline, a linear regression of change on E, adjusted or unadjusted for the baseline outcome level, is usually computed. DAGs and path analysis were used to represent the design of the study, regression to the mean phenomena and the natural evolution of the outcome over time, in order to guide the statistical analysis in different situations: (i) randomized studies; (ii) confounding between the exposure and the outcome; (iii) when the observed baseline value influences the exposure; (iv) when the exposure starts before the beginning of the study. Regarding mediation analyses, we assessed the performances of different methods to estimate a controlled direct effect between an exposure X and an outcome Y, in the presence of intermediate confounding of the mediator-outcome relationship: simple adjustment for the mediator M, inverse probability of treatment weighting, the sequential g-estimator and g-computation. Estimations have been computed in several simulated data sets as well as real data from a cohort study