Littérature scientifique sur le sujet « Graph-based input representation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Graph-based input representation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Graph-based input representation"
Lu, Fangbo, Zhihao Zhang et Changsheng Shui. « Online trajectory anomaly detection model based on graph neural networks and variational autoencoder ». Journal of Physics : Conference Series 2816, no 1 (1 août 2024) : 012006. http://dx.doi.org/10.1088/1742-6596/2816/1/012006.
Texte intégralYu, Xingtong, Zemin Liu, Yuan Fang et Xinming Zhang. « Learning to Count Isomorphisms with Graph Neural Networks ». Proceedings of the AAAI Conference on Artificial Intelligence 37, no 4 (26 juin 2023) : 4845–53. http://dx.doi.org/10.1609/aaai.v37i4.25610.
Texte intégralBauer, Daniel. « Understanding Descriptions of Visual Scenes Using Graph Grammars ». Proceedings of the AAAI Conference on Artificial Intelligence 27, no 1 (29 juin 2013) : 1656–57. http://dx.doi.org/10.1609/aaai.v27i1.8498.
Texte intégralWu, Xinyue, et Huilin Chen. « Augmented Feature Diffusion on Sparsely Sampled Subgraph ». Electronics 13, no 16 (15 août 2024) : 3249. http://dx.doi.org/10.3390/electronics13163249.
Texte intégralCooray, Thilini, et Ngai-Man Cheung. « Graph-Wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning ». Proceedings of the AAAI Conference on Artificial Intelligence 36, no 6 (28 juin 2022) : 6420–28. http://dx.doi.org/10.1609/aaai.v36i6.20593.
Texte intégralGildea, Daniel, Giorgio Satta et Xiaochang Peng. « Ordered Tree Decomposition for HRG Rule Extraction ». Computational Linguistics 45, no 2 (juin 2019) : 339–79. http://dx.doi.org/10.1162/coli_a_00350.
Texte intégralMiao, Fengyu, Xiuzhuang Zhou, Shungen Xiao et Shiliang Zhang. « A Graph Similarity Algorithm Based on Graph Partitioning and Attention Mechanism ». Electronics 13, no 19 (25 septembre 2024) : 3794. http://dx.doi.org/10.3390/electronics13193794.
Texte intégralCoşkun, Kemal Çağlar, Muhammad Hassan et Rolf Drechsler. « Equivalence Checking of System-Level and SPICE-Level Models of Linear Circuits ». Chips 1, no 1 (13 juin 2022) : 54–71. http://dx.doi.org/10.3390/chips1010006.
Texte intégralZhang, Dong, Suzhong Wei, Shoushan Li, Hanqian Wu, Qiaoming Zhu et Guodong Zhou. « Multi-modal Graph Fusion for Named Entity Recognition with Targeted Visual Guidance ». Proceedings of the AAAI Conference on Artificial Intelligence 35, no 16 (18 mai 2021) : 14347–55. http://dx.doi.org/10.1609/aaai.v35i16.17687.
Texte intégralRen, Min, Yunlong Wang, Zhenan Sun et Tieniu Tan. « Dynamic Graph Representation for Occlusion Handling in Biometrics ». Proceedings of the AAAI Conference on Artificial Intelligence 34, no 07 (3 avril 2020) : 11940–47. http://dx.doi.org/10.1609/aaai.v34i07.6869.
Texte intégralThèses sur le sujet "Graph-based input representation"
Agarwal, Navneet. « Autοmated depressiοn level estimatiοn : a study οn discοurse structure, input representatiοn and clinical reliability ». Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC215.
Texte intégralGiven the severe and widespread impact of depression, significant research initiatives have been undertaken to define systems for automated depression assessment. The research presented in this dissertation revolves around the following questions that remain relatively unexplored despite their relevance within automated depression assessment domain; (1) the role of discourse structure in mental health analysis, (2) the relevance of input representation towards the predictive abilities of neural network models, and (3) the importance of domain expertise in automated depression detection.The dyadic nature of patient-therapist interviews ensures the presence of a complex underlying structure within the discourse. Within this thesis, we first establish the importance of therapist questions within the neural network model's input, before showing that a sequential combination of patient and therapist input is a sub-optimal strategy. Consequently, Multi-view architectures are proposed as a means of incorporating the discourse structure within the learning process of neural networks. Experimental results with two different text encodings show the advantages of the proposed multi-view architectures, validating the relevance of retaining discourse structure within the model's training process.Having established the need to retain the discourse structure within the learning process, we further explore graph based text representations. The research conducted in this context highlights the impact of input representations not only in defining the learning abilities of the model, but also in understanding their predictive process. Sentence Similarity Graphs and Keyword Correlation Graphs are used to exemplify the ability of graphical representations to provide varying perspectives of the same input, highlighting information that can not only improve the predictive performance of the models but can also be relevant for medical professionals. Multi-view concept is also incorporated within the two graph structures to further highlight the difference in the perspectives of the patient and the therapist within the same interview. Furthermore, it is shown that visualization of the proposed graph structures can provide valuable insights indicative of subtle changes in patient and therapist's behavior, hinting towards the mental state of the patient.Finally, we highlight the lack of involvement of medical professionals within the context of automated depression detection based on clinical interviews. As part of this thesis, clinical annotations of the DAIC-WOZ dataset were performed to provide a resource for conducting interdisciplinary research in this field. Experiments are defined to study the integration of the clinical annotations within the neural network models applied to symptom-level prediction task within the automated depression detection domain. Furthermore, the proposed models are analyzed in the context of the clinical annotations to analogize their predictive process and psychological tendencies with those of medical professionals, a step towards establishing them as reliable clinical tools
Chapitres de livres sur le sujet "Graph-based input representation"
Jagan, Balaji, Ranjani Parthasarathi et Geetha T. V. « Graph-Based Abstractive Summarization ». Dans Innovations, Developments, and Applications of Semantic Web and Information Systems, 236–61. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5042-6.ch009.
Texte intégralKumar, P. Krishna, et Harish G. Ramaswamy. « Graph Classification with GNNs : Optimisation, Representation & ; Inductive Bias ». Dans Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240726.
Texte intégralToropov, Andrey A., Alla P. Toropova, Emilio Benfenati, Orazio Nicolotti, Angelo Carotti, Karel Nesmerak, Aleksandar M. Veselinović et al. « QSPR/QSAR Analyses by Means of the CORAL Software ». Dans Pharmaceutical Sciences, 929–55. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1762-7.ch036.
Texte intégralToropov, Andrey A., Alla P. Toropova, Emilio Benfenati, Orazio Nicolotti, Angelo Carotti, Karel Nesmerak, Aleksandar M. Veselinović et al. « QSPR/QSAR Analyses by Means of the CORAL Software ». Dans Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment, 560–85. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8136-1.ch015.
Texte intégralZhang, Taolin, Dongyang Li, Qizhou Chen, Chengyu Wang, Longtao Huang, Hui Xue, Xiaofeng He et Jun Huang. « R4 : Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models ». Dans Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240755.
Texte intégralYang, Zixuan, Xiao Wang, Yanhua Yu, Yuling Wang, Kangkang Lu, Zirui Guo, Xiting Qin, Yunshan Ma et Tat-Seng Chua. « Hop-based Heterogeneous Graph Transformer ». Dans Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240759.
Texte intégralOmerovic, Aida, Amela Karahasanovic et Ketil Stølen. « Uncertainty Handling in Weighted Dependency Trees ». Dans Dependability and Computer Engineering, 381–416. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60960-747-0.ch016.
Texte intégralActes de conférences sur le sujet "Graph-based input representation"
Morris, Matthew, David J. Tena Cucala, Bernardo Cuenca Grau et Ian Horrocks. « Relational Graph Convolutional Networks Do Not Learn Sound Rules ». Dans 21st International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}, 897–908. California : International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/kr.2024/84.
Texte intégralGuo, Zhichun, Kehan Guo, Bozhao Nan, Yijun Tian, Roshni G. Iyer, Yihong Ma, Olaf Wiest et al. « Graph-based Molecular Representation Learning ». Dans Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California : International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/744.
Texte intégralJin, Ming, Yizhen Zheng, Yuan-Fang Li, Chen Gong, Chuan Zhou et Shirui Pan. « Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning ». Dans Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California : International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/204.
Texte intégralJin, Di, Luzhi Wang, Yizhen Zheng, Xiang Li, Fei Jiang, Wei Lin et Shirui Pan. « CGMN : A Contrastive Graph Matching Network for Self-Supervised Graph Similarity Learning ». Dans Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California : International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/292.
Texte intégralGuan, Sheng, Hanchao Ma et Yinghui Wu. « RoboGNN : Robustifying Node Classification under Link Perturbation ». Dans Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California : International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/420.
Texte intégralAhmetaj, Shqiponja, Robert David, Magdalena Ortiz, Axel Polleres, Bojken Shehu et Mantas Šimkus. « Reasoning about Explanations for Non-validation in SHACL ». Dans 18th International Conference on Principles of Knowledge Representation and Reasoning {KR-2021}. California : International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/kr.2021/2.
Texte intégralLi, Zuchao, Xingyi Guo, Letian Peng, Lefei Zhang et Hai Zhao. « iRe2f : Rethinking Effective Refinement in Language Structure Prediction via Efficient Iterative Retrospecting and Reasoning ». Dans Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California : International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/570.
Texte intégralFan, Zhihao, Zhongyu Wei, Siyuan Wang, Ruize Wang, Zejun Li, Haijun Shan et Xuanjing Huang. « TCIC : Theme Concepts Learning Cross Language and Vision for Image Captioning ». Dans Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California : International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/91.
Texte intégralSun, Tien-Lung, Chuan-Jun Su, Richard J. Mayer et Richard A. Wysk. « Shape Similarity Assessment of Mechanical Parts Based on Solid Models ». Dans ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0234.
Texte intégralMiller, Michael G., James L. Mathieson, Joshua D. Summers et Gregory M. Mocko. « Representation : Structural Complexity of Assemblies to Create Neural Network Based Assembly Time Estimation Models ». Dans ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71337.
Texte intégral