Sommaire
Littérature scientifique sur le sujet « Grafi conoscenza »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Grafi conoscenza ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Grafi conoscenza"
Guerrieri, Claudia. « Linked open data e rappresentazione del patrimonio culturale : un caso applicativo per diffondere la conoscenza dei beni culturali ecclesiastici nel web semantico ». DigItalia 17, no 1 (juin 2022) : 184–202. http://dx.doi.org/10.36181/digitalia-00047.
Texte intégralRuggiero, G., A. Bacci et R. Ricci. « Identificazione della natura istologica deigliomi cerebrali con tomografia computerizzata ». Rivista di Neuroradiologia 2, no 3 (octobre 1989) : 267–71. http://dx.doi.org/10.1177/197140098900200308.
Texte intégralVeninata, Chiara. « Dal Catalogo generale dei beni culturali al knowledge graph del patrimonio culturale italiano : il progetto ArCo ». DigItalia 15, no 2 (décembre 2020) : 43–56. http://dx.doi.org/10.36181/digitalia-00013.
Texte intégralThèses sur le sujet "Grafi conoscenza"
Balzani, Lorenzo. « Verbalizzazione di eventi biomedici espressi nella letteratura scientifica : generazione controllata di linguaggio naturale da grafi di conoscenza mediante transformer text-to-text ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24286/.
Texte intégralBIANCHI, FEDERICO. « Corpus-based Comparison of Distributional Models of Language and Knowledge Graphs ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/263553.
Texte intégralOne of the main goals of artificial intelligence is understanding how intelligent agent acts. Language is one of the most important media of communication, and studying theories that can account for the meaning of natural language expressions is an important task. Language is one of the most important media of communication, and studying theories that can account for the meaning of natural language expressions is a crucial task in artificial intelligence. Distributional semantics states that the meaning of natural language expressions can be derived from the context in which the expressions appear. This theory has been implemented by algorithms that generate vector representations of natural language expressions that represent similar natural language expressions with similar vectors. In the last years, several cognitive scientists have shown that these representations are correlated with associative learning and they capture cognitive biases and stereotypes as they are encoded in text corpora. If language is encoding important aspects of cognition and our associative knowledge, and language usage change across the contexts, the comparison of language usage in different contexts may reveal important associative knowledge patterns. Thus, if we want to reveal these patterns, we need ways to compare distributional representations that are generated from different text corpora. For example, using these algorithms on textual documents from different periods will generate different representations: since language evolves during time, finding a way to compare words that have shifted over time is a valuable task for artificial intelligence (e.g., the word "Amazon" has changed its prevalent meaning during the last years). In this thesis, we introduce a corpus-based comparative model that allows us to compare representations of different sources generated under the distributional semantic theory. We propose a model that is both effective and efficient, and we show that it can also deal with entity names and not just words, overcoming some problems that follow from the ambiguity of natural language. Eventually, we combine these methods with logical approaches. We show that we can do logical reasoning on these representations and make comparisons based on logical constructs.