Littérature scientifique sur le sujet « Glycoside de flavanone amers »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Glycoside de flavanone amers ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Glycoside de flavanone amers"

1

Lewinsohn, Efraim, Lothar Britsch, Yehuda Mazur et Jonathan Gressel. « Flavanone Glycoside Biosynthesis in Citrus ». Plant Physiology 91, no 4 (1 décembre 1989) : 1323–28. http://dx.doi.org/10.1104/pp.91.4.1323.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Aquino, Rita, M. Letizia Ciavatta, Francesco De Simone et Cosimo Pizza. « A flavanone glycoside from Hamelia patens ». Phytochemistry 29, no 7 (janvier 1990) : 2359–60. http://dx.doi.org/10.1016/0031-9422(90)83076-d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Takahashi, Hironobu, Sachiyo Hirata, Hiroyuki Minami et Yoshiyasu Fukuyama. « Triterpene and flavanone glycoside from Rhododendron simsii ». Phytochemistry 56, no 8 (avril 2001) : 875–79. http://dx.doi.org/10.1016/s0031-9422(00)00493-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Intekhab, Javed, Mohammad Aslam, Vivek Bhadauria et Preeti Singh. « A new flavanone glycoside from Clausena pentaphylla ». Chemistry of Natural Compounds 48, no 4 (septembre 2012) : 568–69. http://dx.doi.org/10.1007/s10600-012-0312-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chen, R. C., G. B. Sun, J. Wang, H. J. Zhang et X. B. Sun. « Naringin protects against anoxia/reoxygenation-induced apoptosis in H9c2 cells via the Nrf2 signaling pathway ». Food & ; Function 6, no 4 (2015) : 1331–44. http://dx.doi.org/10.1039/c4fo01164c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Jangwan, J. S., et R. P. Bahuguna. « Puddumin-B, a New Flavanone Glycoside fromPrunus cerasoides ». International Journal of Crude Drug Research 27, no 4 (janvier 1989) : 223–26. http://dx.doi.org/10.3109/13880208909116906.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zou, Wei, Yonggang Wang, Haibin Liu, Yulong Luo, Si Chen et Weiwei Su. « Melitidin : A Flavanone Glycoside from Citrus grandis ‘Tomentosa’ ». Natural Product Communications 8, no 4 (avril 2013) : 1934578X1300800. http://dx.doi.org/10.1177/1934578x1300800411.

Texte intégral
Résumé :
Citrus grandis ‘Tomentosa’ is a traditional Chinese medicine, used as an antitussive. In this research, melitidin, a flavanone glycoside, was isolated from this species for the first time by using chromatographic methods. The structure was confirmed through comprehensive analyses of its ultraviolet, infrared, 1H and 13C NMR, HMBC and HMQC spectroscopic and high-resolution mass spectrometric data. Meliditin showed a good antitussive effect on cough induced by citric acid in Guinea pig, suggesting that it was a contributor to the antitussive effect of C. grandis ‘Tomentosa’.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Diao, Shengbao, Mei Jin, Chun Shi Jin, Cheng-Xi Wei, Jinfeng Sun, Wei Zhou et Gao Li. « A new flavanone glycoside isolated from Tournefortia sibirica ». Natural Product Research 33, no 20 (22 décembre 2018) : 3021–24. http://dx.doi.org/10.1080/14786419.2018.1512995.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chen, Yu-Jie, Guo-Yong Xie, Guang-Kai Xu, Yi-Qun Dai, Lu Shi et Min-Jian Qin. « Chemical Constituents of Pyrrosia calvata ». Natural Product Communications 10, no 7 (juillet 2015) : 1934578X1501000. http://dx.doi.org/10.1177/1934578x1501000714.

Texte intégral
Résumé :
A novel flavanone glycoside, 3′,5′,5,7-tetrahydroxy-6- C- β-D-glucopyranosyl-flavanone (1), along with 16 known compounds, ( R/ S)-eriodictyol-8- C- β-D-glucopyranoside (2), quercetin-3- O- α-D-rhamnosyl (1′”→3′”)- β-D-glucopyranoside (3), hemipholin (4), 4 β-carboxymethyl-(-)-epicatechin methyl ester (5), kaempferol (6), quercetin (7), mangiferin (8), chlorogenic acid (9), 1,5- O-dicaffeoylquinic acid (10), 3,5- O-dicaffeoylquinic acid (11), 3- O-caffeoylquinic acid methyl ester (12), 1- O-caffeoyl glycoside (13), 4- O- β-D-glucopyranosyl-caffeic acid (14), 3′- O-methyleplcatechin-7- O- β-D-glucopyranoside (15), hop-22(29)-en-30-ol (16) and diploptene (17), were isolated from the whole plant of Pyrrosia calvata (Backer) Ching. Among them, compounds 2, 3, 4, 10, 11, 13 and 14 were isolated from the family Polypodiaceae for the first time, and compound 5 has not been recorded previously from the genus Pyrrosia.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Okwu, D. E., et F. N. I. Morah. « Isolation and Characterization of Flavanone Glycoside 4I,5, 7-Trihydroxy Flavanone Rhamnoglucose from Garcinia kola Seed ». Journal of Applied Sciences 7, no 2 (1 janvier 2007) : 306–9. http://dx.doi.org/10.3923/jas.2007.306.309.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Glycoside de flavanone amers"

1

Ben, Zid Malek. « Etude de la déshydratation osmotique pour la formulation et la stabilisation d’écorces de bigarades (Citrus aurantium) ». Electronic Thesis or Diss., Montpellier, SupAgro, 2016. http://www.theses.fr/2016NSAM0007.

Texte intégral
Résumé :
L’objectif du présent travail est la modulation de l’amertume des écorces de bigarades par déshydratation osmotique en vue de leur valorisation comme produits alimentaires. Les traitements envisagés à cet effet sont la déshydratation-imprégnation par immersion dans des solutions de saccharose (DII) (60 °Brix -50 °C, 60 °Brix- 25 °C, 40 °Brix- 25 °C, 6h) et la déshydratation osmotique à sec (DS) (saccharose en poudre-25 °C, 6h). Deux modes de blanchiment sont également mis en œuvre afin d’améliorer les performances de la déshydratation osmotique : le blanchiment à la vapeur (100 °C, 5 min) et le blanchiment à l’eau (85 °C-60 min et 95 °C-10 min). Les couplages issus de la combinaison entre les prétraitements thermiques et les traitements osmotiques sont VDII, EDII, VDS, EDS avec V : (blanchiment à la vapeur - 5 min), E : (blanchiment dans l’eau à 95 °C - 6 min), DII : (25 °C-60 °Brix- 4h) et DS : (25 °C- saccharose en poudre- 4h). L’étude des transferts de matières y compris les composés amers repose sur une approche cinétique. L’analyse quantitative de ces composés est réalisée par chromatographie phase liquide. Un examen microscopique des produits blanchis et déshydratés osmotiquement a été également mis en œuvre afin d’évaluer leur porosité. Le profil sensoriel des écorces obtenues par différents traitements osmotiques (DS, VDS, EDS, DII, VDII, EDII) est établi afin de discriminer les différences entre produits et contrôler l’efficacité de chaque traitement sur la modulation de l’amertume. Cette étude a permis d’identifier trois glycosides de flavanones amers majoritairement présents dans les écorces de bigarades : la naringine, la néohespéridine et la néoériocitrine. La porosité élevée des écorces de bigarades estimée à 0,43 favorise le phénomène d’imbibition en liquide externe au cours du blanchiment à l’eau et au cours de la DII dans les solutions à faible concentration (40 °Brix). Ce phénomène est également observé pendant la première heure de la DII dans les solutions à forte concentration en sucre (60 °Brix). Des pertes significatives en composés amers sont notées au cours du blanchiment à l’eau et aussi au cours des traitements osmotiques. Ce résultat intéressant montre que la déshydratation osmotique permet non seulement d’édulcorer les écorces mais encore elle permet d’éliminer une partie des composés amers. Cependant, les pertes qui découlent de la DII sont plus importantes que celles obtenues par DS. Le blanchiment à la vapeur, par ailleurs, n’a pas d’effet sur les flavanones amères. D’un autre côté, il s’avère que les deux modes de blanchiment accélèrent et augmentent les pertes en eau. Par ailleurs, seul le blanchiment à l’eau permet d’accroitre les gains en sucre au cours de la DII et la DS. Les pertes en composés amers sont favorisées par les deux modes de blanchiment mais elles sont plus importantes au cours du blanchiment à l’eau. Les résultats de l’évaluation sensorielle révèlent une différence significative entre les produits. Les écorces les plus appréciées sont les écorces les plus sucrées qui présentent et un goût amer faible. Ces écorces sont uniquement obtenues par couplage des traitements osmotiques (DS et DII) au blanchiment à l’eau
The main objective of this study is to modulate the excessive bitterness of bitter orange peels using the technique of osmotic dehydration. The examined treatments are the dehydration-impregnation by soaking in sucrose solutions (DII) (60 ° Brix -50 ° C, 60 ° Brix- 25 ° C, 40 ° Brix- 25 ° C, 6h) and the dry osmotic dehydration (DS) (granulated sucrose -25 ° C, 6 h). Two blanching methods are also investigated in order to improve the performance of the osmotic dehydration: steam blanching (100 ° C, 5 min) and water blanching (85 ° C-60 min and 95 ° C-10 min). The blanching-osmotic dehydration combined treatments are VDII, EDII, VDS, EDS where V: (steam blanching - 5 min), E: (water blanching at 95 ° C - 6 min ), DII: (25 ° C-60 ° Brix- 4h) and DS (25 ° C granulated sucrose -4h). The study of the mass transfers including bitter compounds is based on a kinetic approach. The quantitative analysis of these compounds is carried out with high-performance liquid chromatography. Microscopic examination of blanched and osmotically dehydrated peels was performed to evaluate their porosity. The sensory profile of peels obtained by different osmotic treatments (DS, VDS, EDS, DII, VDII, EDII) was established in order to distinguish the differences between products and to control the effectiveness of each treatment on bitterness modulation. The main bitter flavanone glycosides identified in the peels are neoeriocitrin, naringin, and neohesperidin with predominance of the last two compounds. The high porosity of the peels (0.43 (0.06)) promotes the imbibition of external liquid during water blanching and during DII in low concentrated solutions (40 ° Brix). This phenomenon was also observed during the first hour of the DII in high sugar concentrated solutions (60° Brix). Significant losses of bitter compounds are noted during water blanching and also during osmotic treatments. This interesting result shows that the osmotic dehydration could modulate the bitterness of the peels either by promoting sugar uptake or flavanones glycosides loss. However, the DIi elicited higher loss of bitter compounds than DS. By contrast, the steam blanching showed good retention of bitter compounds. Both blanching methods accelerate and increase water loss. However, only water blanching increases sugar gains during DII and DS treatments. Losses of bitter compounds are increased either by steam or blanching water, but the latter gave rise to much higher losses than the former. The results of sensory evaluation showed significant differences between the products. Coupling water blanching to either DS or DII treatments yielded to high sweetened peels with low bitter taste intensity. These products are the most appreciated ones
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie