Littérature scientifique sur le sujet « Glycerol signaling »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Glycerol signaling ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Glycerol signaling"
Hohmann, Stefan. « Osmotic Stress Signaling and Osmoadaptation in Yeasts ». Microbiology and Molecular Biology Reviews 66, no 2 (juin 2002) : 300–372. http://dx.doi.org/10.1128/mmbr.66.2.300-372.2002.
Texte intégralIsmail, Alaa, Ahmed Salah, Adel Guirgis, Shaden Muawia et Hany Khalil. « Glycerol-mediated lysosomal associated proteins as a novel anticancer theory in colon cancer cell line ». Journal of Internal Medicine : Science & ; Art 4 (25 mai 2023) : 2–10. http://dx.doi.org/10.36013/jimsa.v4i.110.
Texte intégralAllmann, Stefan, Marion Wargnies, Nicolas Plazolles, Edern Cahoreau, Marc Biran, Pauline Morand, Erika Pineda et al. « Glycerol suppresses glucose consumption in trypanosomes through metabolic contest ». PLOS Biology 19, no 8 (13 août 2021) : e3001359. http://dx.doi.org/10.1371/journal.pbio.3001359.
Texte intégralKrantz, Marcus, Bodil Nordlander, Hadi Valadi, Mikael Johansson, Lena Gustafsson et Stefan Hohmann. « Anaerobicity Prepares Saccharomyces cerevisiae Cells for Faster Adaptation to Osmotic Shock ». Eukaryotic Cell 3, no 6 (décembre 2004) : 1381–90. http://dx.doi.org/10.1128/ec.3.6.1381-1390.2004.
Texte intégralZhang, Zhao, Diana M. Iglesias, Rachel Corsini, LeeLee Chu et Paul Goodyer. « WNT/β-Catenin Signaling Is Required for Integration of CD24+Renal Progenitor Cells into Glycerol-Damaged Adult Renal Tubules ». Stem Cells International 2015 (2015) : 1–11. http://dx.doi.org/10.1155/2015/391043.
Texte intégralNath, Karl A., John D. Belcher, Meryl C. Nath, Joseph P. Grande, Anthony J. Croatt, Allan W. Ackerman, Zvonimir S. Katusic et Gregory M. Vercellotti. « Role of TLR4 signaling in the nephrotoxicity of heme and heme proteins ». American Journal of Physiology-Renal Physiology 314, no 5 (1 mai 2018) : F906—F914. http://dx.doi.org/10.1152/ajprenal.00432.2017.
Texte intégralMugabo, Yves, Shangang Zhao, Julien Lamontagne, Anfal Al-Mass, Marie-Line Peyot, Barbara E. Corkey, Erik Joly, S. R. Murthy Madiraju et Marc Prentki. « Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic β-cells ». Journal of Biological Chemistry 292, no 18 (9 mars 2017) : 7407–22. http://dx.doi.org/10.1074/jbc.m116.763060.
Texte intégralZeng, Changjun, Keyi Tang, Lian He, Wenpei Peng, Li Ding, Donghui Fang et Yan Zhang. « Effects of glycerol on apoptotic signaling pathways during boar spermatozoa cryopreservation ». Cryobiology 68, no 3 (juin 2014) : 395–404. http://dx.doi.org/10.1016/j.cryobiol.2014.03.008.
Texte intégralBełtowski, Jerzy, et Krzysztof Wiórkowski. « Role of Hydrogen Sulfide and Polysulfides in the Regulation of Lipolysis in the Adipose Tissue : Possible Implications for the Pathogenesis of Metabolic Syndrome ». International Journal of Molecular Sciences 23, no 3 (25 janvier 2022) : 1346. http://dx.doi.org/10.3390/ijms23031346.
Texte intégralKrycer, James R., Lake-Ee Quek, Deanne Francis, Armella Zadoorian, Fiona C. Weiss, Kristen C. Cooke, Marin E. Nelson et al. « Insulin signaling requires glucose to promote lipid anabolism in adipocytes ». Journal of Biological Chemistry 295, no 38 (28 juillet 2020) : 13250–66. http://dx.doi.org/10.1074/jbc.ra120.014907.
Texte intégralThèses sur le sujet "Glycerol signaling"
Zhang, Michael Sining. « Characterizing how glycerol monolaurate (GML) affects human T cell signaling and function ». Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6347.
Texte intégralChanda, Bidisha. « GLYCEROL-3-PHOSPHATE IS A NOVEL REGULATOR OF BASAL AND INDUCED DEFENSE SIGNALING IN PLANTS ». UKnowledge, 2012. http://uknowledge.uky.edu/plantpath_etds/16.
Texte intégralMandal, Mihir Kumar. « MOLECULAR AND BIOCHEMICAL CHARACTERIZATION OF OLEATE- AND GLYCEROL-3-PHOSPHATE-REGULATED SIGNALING IN PLANTS ». UKnowledge, 2012. http://uknowledge.uky.edu/plantpath_etds/3.
Texte intégralVenugopal, Srivathsa C. « MOLECULAR, GENETIC AND BIOCHEMICAL CHARACTERIZATION OF OLEIC ACID- AND GLYCEROL-MEDIATED SIGNALING IN PLANT DEFENSE ». UKnowledge, 2008. http://uknowledge.uky.edu/plantpath_etds/11.
Texte intégralRomelfanger, Claire Theresa 1982. « Signaling specificity in the filamentous growth pathway of Saccharomyces cerevisiae ». Thesis, University of Oregon, 2011. http://hdl.handle.net/1794/11260.
Texte intégralCells convey information through signaling pathways. Distinct signaling pathways often rely on similar mechanisms and may even use the same molecules. With a variety of signals conveyed by pathways that share components, how does the cell maintain the integrity of each pathway? Budding yeast provides an example of multiple signaling pathways utilizing the same components to transduce different signals. The mating pathway, the high osmolarity glycerol (HOG) pathway and the filamentous growth (FG) pathway each respond to different environmental conditions and generate unique cellular responses. Despite the individuality of the pathways, they each contain a core group of the same signaling proteins. How does the cell generate a variety or responses utilizing the same group of proteins? Both the mating and HOG pathways utilize scaffolding factors that concentrate pathway components to the location of activation and in the case of the mating pathway alter the kinetics of the interaction. In addition, negative regulatory mechanisms operate in both the mating and HOG pathways. These negative regulatory mechanisms are understood in detail for the mating pathway but not for the HOG pathway. Mechanisms for providing specificity for the FG pathway are as yet unknown. The purpose of this work is to elucidate the mechanisms that provide specificity to the FG pathway. The search for specificity factors was done through both a random mutagenesis screen and a synthetic genetic array screen, looking for mutants in which activation of the FG pathway led to inappropriate activation of the HOG pathway. The random mutagenesis screen resulted in a large number of mutants that I organized into five complementation groups. The identity of the gene mutated in the largest complementation group was sought using a variety of methods including complementation with the yeast deletion collection and whole genome sequencing. A synthetic genetic array was screened as an alternative method to identify genes necessary for FG pathway specificity. These experiments have resulted in a list of candidate genes, but thus far have not yet led to any discernable mechanism for maintenance of FG pathway specificity.
Committee in charge: Karen Guillemin, Chairperson; George F. Sprague Jr., Advisor; Tom Stevens, Member; Tory Herman, Member; Diane Hawley, Outside Member
El-Shetehy, Mohamed H. « Molecular and Biochemical Signaling Underlying Arabidopsis-Bacterial/Virus/Fungal Interactions ». UKnowledge, 2016. http://uknowledge.uky.edu/plantpath_etds/19.
Texte intégralEl, Kadri Mohammad. « Role(s) of glycerol metabolism in the biology of African trypanosomes ». Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0456.
Texte intégralTrypanosoma brucei, an extracellular parasite responsible for African trypanosomiasis, must adapt to distinct environments in its mammalian hosts and the tsetse fly vector. In the mammalian bloodstream, glucose serves as the primary carbon source, fueling the parasite's central carbon metabolism and ATP production, which supports its rapid growth. Once the parasites reach high cell densities, a quorum-sensing mechanism induces a transition from proliferative slender forms to growth-arrested stumpy forms (stumpy-QS). These stumpy forms help prevent host mortality by limiting parasitaemia and are primed for transmission to the tsetse fly. However, it has been demonstrated that glycerol can effectively replace glucose in feeding the parasite’s central carbon metabolism, suggesting a significant role in vivo. This aligns with findings that trypanosomes predominantly reside in the extravascular spaces of tissues such as the skin and adipose tissue, where interstitial glycerol concentrations are 5 to 20 times higher than in plasma. Glycerol is released from adipocytes through both lipolysis and lipolysis-independent processes such as glycolysis, and it has been suggested that trypanosome-induced adipocyte lipolysis may even protect the host against trypanosome infection. Together, these data suggest that interactions between adipocytes and trypanosomes, potentially mediated by glycerol, play a critical role in the parasite’s life cycle.This thesis explores the impact of glycerol on bloodstream form (BSF) Trypanosoma brucei. Our findings demonstrated that glycerol induces the differentiation of slender BSF into growth-arrested forms that resemble stumpy-QS, but with enhanced survival. Furthermore, under tissue-like conditions, characterized by glycerol levels between 0.2-0.5 mM and glucose at 4 mM, proliferative intermediate forms were generated, which were capable of differentiating into the insect vector stage (procyclics) and sustaining infections in tsetse flies. Additionally, glycerol extended the lifespan of quorum-sensing-induced stumpy forms, which normally have a limited lifespan of a few days. All these data led us to propose a revised model for transmission, in which quorum sensing-induced stumpy-QS forms protect the host from high parasitaemia, while glycerol from adipocytes induces intermediate-Glyc or long-lived stumpy forms that facilitate transmission to the fly.Another key aspect of my thesis concerns the dissection of the signalling pathway involved in glycerol-induced differentiation. By exploiting the extended lifespan of stumpy-Glyc cells in culture, we selected mutants resistant to glycerol-induced differentiation through extended in vitro culturing in a glycerol-containing medium. Comparative genomic analyses between these mutants and cells grown in glucose, which are sensitive to glycerol-induced differentiation, identified candidate mutations associated with the resistance phenotype. Notably, these mutations were found to affect the protein kinase A regulatory subunit (PKAR), whose role in the signalling pathway was validated.Finally, we explored whether T. brucei can metabolize glycerol secreted by adipocytes even in the presence of excess glucose. To investigate this, we used an in vitro co-culture system using a transwell assay, which allowed us to analyse the interactions between parental and mutant trypanosomes and adipocytes. We examined growth and exometabolome profiles using nuclear magnetic resonance (NMR)-based metabolite profiling, coupled with 13C-labeling to trace specific metabolites. Our data showed that T. brucei efficiently utilized glycerol secreted by adipocytes to support its central carbon metabolism, even when glucose was abundant.Together, these data demonstrated that glycerol is a key player in the biology of Trypanosoma brucei
Chapitres de livres sur le sujet "Glycerol signaling"
Tolias, Kimberley F., et Christopher L. Carpenter. « Enzymes involved in the synthesis of PtdIns(4,5)P2 and their regulation : PtdIns kinases and PtdInsP kinases ». Dans Biology of Phosphoinositides, 109–30. Oxford University PressOxford, 2000. http://dx.doi.org/10.1093/oso/9780199637652.003.0003.
Texte intégralRapports d'organisations sur le sujet "Glycerol signaling"
Jander, Georg, et Daniel Chamovitz. Investigation of growth regulation by maize benzoxazinoid breakdown products. United States Department of Agriculture, janvier 2015. http://dx.doi.org/10.32747/2015.7600031.bard.
Texte intégral