Littérature scientifique sur le sujet « Glomerular parietal epithelial cells »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Glomerular parietal epithelial cells ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Glomerular parietal epithelial cells"
Weinstein, T., R. Cameron, A. Katz et M. Silverman. « Rat glomerular epithelial cells in culture express characteristics of parietal, not visceral, epithelium. » Journal of the American Society of Nephrology 3, no 6 (décembre 1992) : 1279–87. http://dx.doi.org/10.1681/asn.v361279.
Texte intégralRoeder, Sebastian S., Ania Stefanska, Diana G. Eng, Natalya Kaverina, Maria W. Sunseri, Bairbre A. McNicholas, Peter Rabinovitch et al. « Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age ». American Journal of Physiology-Renal Physiology 309, no 2 (15 juillet 2015) : F164—F178. http://dx.doi.org/10.1152/ajprenal.00144.2015.
Texte intégralGharib, Sina A., Jeffrey W. Pippin, Takamoto Ohse, Scott G. Pickering, Ronald D. Krofft et Stuart J. Shankland. « Transcriptional Landscape of Glomerular Parietal Epithelial Cells ». PLoS ONE 9, no 8 (15 août 2014) : e105289. http://dx.doi.org/10.1371/journal.pone.0105289.
Texte intégral王, 金艳. « Parietal Epithelial Cells and Glomerular Dis-eases ». Advances in Clinical Medicine 13, no 04 (2023) : 6478–88. http://dx.doi.org/10.12677/acm.2023.134909.
Texte intégralBianchi, C., J. Gutkowska, G. Thibault, R. Garcia, J. Genest et M. Cantin. « Distinct localization of atrial natriuretic factor and angiotensin II binding sites in the glomerulus ». American Journal of Physiology-Renal Physiology 251, no 4 (1 octobre 1986) : F594—F602. http://dx.doi.org/10.1152/ajprenal.1986.251.4.f594.
Texte intégralOtani, Yuki, Osamu Ichii, Md Abdul Masum, Takashi Namba, Teppei Nakamura et Yasuhiro Kon. « Castrated autoimmune glomerulonephritis mouse model shows attenuated glomerular sclerosis with altered parietal epithelial cell phenotype ». Experimental Biology and Medicine 246, no 11 (27 février 2021) : 1318–29. http://dx.doi.org/10.1177/1535370221996010.
Texte intégralBARIÉTY, JEAN, PATRICK BRUNEVAL, GARY HILL, THEANO IRINOPOULOU, CHANTAL MANDET et ALAIN MEYRIER. « Posttransplantation Relapse of FSGS Is Characterized by Glomerular Epithelial Cell Transdifferentiation ». Journal of the American Society of Nephrology 12, no 2 (février 2001) : 261–74. http://dx.doi.org/10.1681/asn.v122261.
Texte intégralAppel, Daniel, David B. Kershaw, Bart Smeets, Gang Yuan, Astrid Fuss, Björn Frye, Marlies Elger, Wilhelm Kriz, Jürgen Floege et Marcus J. Moeller. « Recruitment of Podocytes from Glomerular Parietal Epithelial Cells ». Journal of the American Society of Nephrology 20, no 2 (17 décembre 2008) : 333–43. http://dx.doi.org/10.1681/asn.2008070795.
Texte intégralSmeets, Bart, et Marcus J. Moeller. « Parietal Epithelial Cells and Podocytes in Glomerular Diseases ». Seminars in Nephrology 32, no 4 (juillet 2012) : 357–67. http://dx.doi.org/10.1016/j.semnephrol.2012.06.007.
Texte intégralKumar, R., J. Schaefer, J. P. Grande et P. C. Roche. « Immunolocalization of calcitriol receptor, 24-hydroxylase cytochrome P-450, and calbindin D28k in human kidney ». American Journal of Physiology-Renal Physiology 266, no 3 (1 mars 1994) : F477—F485. http://dx.doi.org/10.1152/ajprenal.1994.266.3.f477.
Texte intégralThèses sur le sujet "Glomerular parietal epithelial cells"
Gianesello, Lisa. « Protein Uptake at Glomerular Level : Possible Involvement of an Endocytic Machinery in Cell Culture and in Patients with Lupus Nephritis ». Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3425702.
Texte intégralClC-5, megalina (LRP2), cubilina, Disabled 2 (Dab2) ed Amnionless (AMN) fanno parte del complesso molecolare coinvolto a livello del tubulo prossimale nel recupero delle proteine a basso peso molecolare e dell’albumina mediante endocitosi. È già stata riportata la presenza di ClC-5, megalina e cubilina a livello dei podociti in biopsie renali umane. Inoltre è stato dimostrato che i podociti sono in grado di internalizzare l’albumina attraverso un meccanismo di endocitosi. Il mancato funzionamento di questo sistema può portare a proteinuria, che è una delle prime manifestazioni del coinvolgimento renale nel Lupus Eritematoso Sistemico (LES). È quindi ragionevole supporre che vi possa essere un coinvolgimento di questo sistema nel meccanismo di uptake delle proteine da parte dei podociti. Gli scopi di questo studio sono stati di esplorare la presenza dei componenti del sistema tubulare di endocitosi delle proteine in podociti umani in coltura e di valutare se e come l’albumina ne modulasse l’espressione. Inoltre, si è voluto indagare l’espressione di ClC-5, megalina e cubilina sia a livello glomerulare che tubulare in biopsie renali di pazienti con nefrite lupica, valutando una possibile relazione con i dati clinici. Abbiamo verificato la presenza di un meccanismo di uptake in podociti umani in coltura attraverso esperimenti di time-lapse con basse dosi di FITC-BSA (10 µg/ml) ed abbiamo osservato l’inizio del processo di internalizzazione in un periodo di tempo variabile dalle 2 alle 15 ore. Per caratterizzare il tipo di cinetica di uptake della FITC-BSA, i podociti sono stati stimolati a differenti tempi (30 min e 2 ore) e dosi (10 µg/ml, 100 µg/ml and 1 mg/ml) mantenendo la coltura a 37°C o 4°C. Si è osservato un aumento significativo della fluorescenza dose-dipendente rispetto al controllo dopo 2 ore dalla stimolazione con una tipica cinetica di internalizzazione recettore-mediata poiché veniva inibita a 4°C. Abbiamo osservato la presenza di ClC-5, Dab2 e AMN oltre a quella di megalina e cubilina in podociti umani in coltura in condizioni basali mediante tecniche di immunoistochimica (IHC) ed immunofluorescenza (IF) ed abbiamo dimostrato la co-localizzazione dei due recettori con l’albumina fluorescente. Per valutare se l’ambiente proteinurico fosse in grado di modulare l’espressione di CLCN5, LRP2, CUBN, DAB2 ed AMN, i podociti umani sono stati stimolati con concentrazioni crescenti di BSA (range 10 µg/ml - 30 mg/ml) e l’espressione dell’RNA messaggero è stata valutata a tempi diversi (2, 4, 8, 24, 48 and 72 hours). Mediante analisi in Real Time PCR, abbiamo osservato un aumento significativo tempo e dose-dipendente di CLCN5, CUBN ed AMN ed un aumento di DAB2 solamente alle 24 ore. Abbiamo raccolto 23 biopsie renali di pazienti con LES, 6 biopsie di controllo ed un caso di Minimal Change Disease. Come parametri clinici abbiamo considerato la proteinuria e la terapia farmacologica. Mediante IHC ed IF abbiamo analizzato l’espressione proteica di ClC-5, megalina e cubilina in sezioni seriali. La quantificazione eseguita mediante analisi morfometrica ha rivelato una correlazione diretta dell’espressione di tutte le molecole in analisi tra il compartimento tubulare e glomerulare, evidenziando una stretta relazione tra i due compartimenti indipendentemente dai livelli di proteinuria. Inoltre, dati preliminari su pazienti privi di terapia farmacologica (ACEi/ARB o immunosoppressivi) hanno mostrato un trend positivo tra l’espressione di queste molecole a livello glomerulare. Curiosamente, abbiamo evidenziato l’espressione di megalina e cubilina in cellule parietali della capsula (PECs) con morfologia ipertrofica in alcuni pazienti LES che, mediante esperimenti di caratterizzazione, abbiamo identificato come una nuova sottopopolazione con un fenotipo intermedio tra cellule mature e progenitrici. Concludendo, per la prima volta abbiamo dimostrato che i podociti umani sono naturalmente predisposti ad effettuare l’endocitosi dell’albumina attraverso un meccanismo recettore-mediato. Inoltre, l’overload proteico è in grado di aumentare l’espressione di CLCN5, CUBN ed AMN in queste cellule. Studi funzionali per dimostrare il ruolo di cubilina nel processo di uptake dell’albumina hanno sottolineato la sua partecipazione in questo meccanismo anche se, verosimilmente, non è l’unico pathway coinvolto. Ulteriori studi saranno necessari per analizzare quali altre molecole possano essere chiamate in causa in questo meccanismo. Per la prima volta abbiamo dimostrato la presenza di ClC-5, megalina e cubilina in glomeruli di pazienti con LES, MCD e controlli, confermando i dati in vitro. Inoltre, nelle biopsie dei pazienti LES abbiamo evidenziato una stretta relazione tra i due compartimenti renali nell’espressione dei componenti di questo sistema, supportando l’idea di una partnership tra cellule tubulari e glomerulari nell’uptake dell’albumina attraverso lo stesso meccanismo di internalizzazione. In aggiunta, dati preliminari ottenuti da pazienti privi di terapia con ACEi/ARB o immunosoppressivi ci ha fatto supporre che il trattamento farmacologico possa influire sull’espressione di questo sistema a livello glomerulare. Le differenze osservate tra lo studio in vivo e quello in vitro, in particolare riguardo l’espressione di megalina, suggeriscono il coinvolgimento di altre cellule del glomerulo oltre ai podociti. Infine, l’espressione di megalina e cubilina nelle PECs dei pazienti LES è un dato molto interessante ma complesso, poiché gli esperimenti di caratterizzazione hanno identificato una sottopopolazione con un fenotipo intermedio tra cellule mature e progenitrici. Ulteriori studi dovranno essere condotti per meglio caratterizzare il ruolo di queste cellule con doppia positività e la loro correlazione con i dati clinici o di progressione della malattia.
Sakhi, Hamza. « Rôle de la Heat Shock Protein 27 au cours des glomérulonéphrites extracapillaires ». Electronic Thesis or Diss., Paris 12, 2022. http://www.theses.fr/2022PA120079.
Texte intégralCrescentic glomerulonephritis (CG) is an aggressive glomerular disease associated with severe kidney outcome. While the main treatment consisting in immunosuppressive therapy is associated with major side-effects in frail patients, to date no drugs targeting the mechanisms directly involved in epithelial crescent formation are available. Indeed, recent studies identified parietal epithelial cells (PEC) as a major component of crescent formation.In this study, we showed that Heat shock protein 27 (HSP27/HSPB1), a stress-inducible protein involved in cancer cell proliferation and migration, is overexpressed in activated PEC of crescentic lesions both in in nephrotoxic nephritis mouse model and humans. Moreover, circulating HSP27 is associated with disease activity in humans with biopsy-proven CG. HSP27 inhibition through OGX-427, an antisens oligonucloeotide targeting HSPB1 mRNA, and Ivermectin (which inhibits HSP27 dimerization) reduce crescent formation in experimental CG model and PEC activation and migration in vitro. However, in NTN murine model, HSP27 inhibition with OGX-427 but no with Ivermectin was associated with a worsening of endothelial injury.Overall, these results identify HSP27 as a new pathogenic protein during crescent formation and a biomarker of disease activity in human CG. Optimal therapeutic option inhibiting HSP27 with the aim to reduce molecular processes leading to proliferative glomerulonephritis remains to be determined
Delbet, Jean-Daniel. « Étude de preuve de concept thérapeutique évaluant l'efficacité d'un anticorps monoclonal dans le traitement des glomérulonéphrites à croissant ciblant CLDN1 dans les cellules épithéliales pariétales glomérulaires ». Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5227.
Texte intégralIntroduction: Crescentic glomerulonephritis (cGN) is the final mode of kidney injury common to several immune-mediated kidney diseases. cGN is characterized by extensive glomerular parietal epithelial cells (PEC) proliferation, forming crescents in urinary space and leading, if untreated, to end-stage kidney disease (ESKD). In a pathological context, claudin-1 (CLDN1), a transmembrane protein involved in epithelial tight junctions, can be exposed outside the tight junctions and mediate pro-fibrotic pathways and extracellular matrix (ECM) remodeling as described in other cell types. CLDN1 is expressed explicitly by PEC in the glomerulus and given the importance of PEC activation in glomerular injury, we evaluated whether a monoclonal antibody targeting CLDN1 could represent a relevant and innovative therapeutic tool. Additionally, specific biomarkers of PEC activation, such as CD44 and CD9, have been studied in cGN. CD44-deficient mice display attenuated experimental cGN, and specific deletion of CD9 in PEC prevents tissue damage in experimental cGN. However, CD9 and CD44 expression in human glomerular cGN (IgA nephropathy (IgAN) and ANCA vasculitis (AAV)) is unknown, as is their correlation with podocyte loss, histological lesions, and renal outcome. The first objective of this study was to evaluate PEC biomarkers (CLDN1, CD9, and CD44) expression in human cGN, their association with glomerular histological lesions, podocyte loss and dedifferentiation, and renal outcome. The second objective is to evaluate the potential benefit of targeting CLDN1 with an anti-CLDN1 Ab in a cGN mouse model. Method: CLDN1, CD9, and CD44 expression in renal tissues of cGN patients was analyzed using kidney multichannel immunofluorescence staining and spatial transcriptomics. Correlation between CLDN1, CD9, and CD44 expression and clinical endpoints (eGFR, proteinuria), histological lesions, biomarkers of podocyte dedifferentiation (p57 and WT1), and renal outcome were studied. A spatially resolved molecular roadmap from CLDN1+/CD44+ crescentic glomeruli was conducted. Proof-of-concept studies using anti-CLDN1 monoclonal antibody were performed in the Matsugi model of cGN. Results: In tissues of 131 patients with IgAN and AAV, multichannel immunofluorescence revealed up-regulated CLDN1 expression by crescents and fibrous lesions. At the time of diagnostic kidney biopsy, glomerular CLDN1 expression was correlated with podocyte loss (measured by p57 expression) and glomerular fibronectin area. The increase of proportion of double-positive (CLDN1+ and CD44+) cells was statistically significantly associated with poor renal outcome (50% decline in estimated glomerular filtration rate (eGFR) or ESKD) in patients with ANCA vasculitis and IgA nephropathy, with a median follow-up of 2.5 and 6.9 years, respectively. Spatial transcriptomics analysis highlighted the association between CLDN1+/CD44+ crescentic glomeruli and extracellular matrix genes. In the cGN murine model, we demonstrated that anti-CLDN1 antibody could bind to activated PEC, its therapeutic target and significantly reduced albuminuria in treated mice. Conclusion: Our results suggest a functional role of CLDN1 in the pathogenesis of cGN providing a preclinical proof-of-concept for the use of anti-CLDN1 antibodies as a novel therapeutic approach in patients with cGN
Liu, Jianhong 1966. « Calcium-induced membrane association of cytosolic phospholipase A2 in glomerular epithelial cells ». Thesis, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=30689.
Texte intégralLiu, Jianhong. « Calcium-induced membrane association of cytosolic phospholipase A¦2 in glomerular epithelial cells ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0030/MQ64393.pdf.
Texte intégralMouawad, Flaviana. « Role of guanine nucleotide exchange factor-H1 in complement- mediated RhoA activation in glomerular epithelial cells ». Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116999.
Texte intégralLes cellules glomérulaires épithéliales viscérales (CGE), ou podocytes, sont des composantes essentielles du glomérule du rein, et jouent un rôle important dans le maintien de la permsélectivité glomérulaire. La régulation du cytosquelette d'actine est à la base du fonctionnement normal du podocyte, ainsi qu'à sa morphologie. Dans le modèle de rat de la néphropathie membraneuse, passive Heymann nephritis (PHN), les anticorps hétérologues se lient aux antigènes des podocytes. Après formation de complexes immuns, le système du complément est activé avec l'assemblage du complexe d'attaque membranaire C5b-9. Dans les CGE, C5b-9 induit des effets sublytiques associés à des modifications morphologiques et à la protéinurie. Nous avons déjà signalé que le complément active RhoA, membre de la famille Rho des petites GTPases, in vitro et in vivo. La présente étude porte sur le rôle de GEF-H1, une protéine de la famille des Rho GEF, dans l'activation de RhoA dans les CGE méditée par le complément. Dans les glomérules de rats avec PHN et dans les CGE cultivés in vitro, la stimulation du complément a augmenté l'activité de GEF-H1, d'une façon parallèle avec l'activation de RhoA. L'activation du GEF-H1 par le complément a été au moins partiellement dépendante de l'extracellular signal-regulated kinase (ERK), mais pas du facteur de croissance épidermique (EGF), de la famille des kinases Src, ou des microtubules. Pour faire face aux effets fonctionnels de GEF-H1, CGE ont été infectées par des lentivirus contenants un petit ARN en épingle à cheveu, pour réduire l'expression de GEF-H1. Les CGE infectées par les lentivirus ont bloqué de manière significative l'activation de RhoA et ont augmenté la toxicité en réponse à la stimulation du complément, impliquant un effet protecteur de GEF-H1 sur les CGE.
Livres sur le sujet "Glomerular parietal epithelial cells"
Elger, Marlies, et Wilhelm Kriz. The renal glomerulus. Sous la direction de Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0043.
Texte intégralTurner, Neil. Crescentic (rapidly progressive) glomerulonephritis. Sous la direction de Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0070.
Texte intégralCho, Carolyn Ryung-Sook. The detachment of glomerular epithelial cells : A theoretical study. 1996.
Trouver le texte intégralCharacterization of rat glomerular epithelial cells in culture : A comparison to rat glomeruli in vivo. Ottawa : National Library of Canada = Bibliothèque nationale du Canada, 1993.
Trouver le texte intégralLennon, Rachel, et Neil Turner. The molecular basis of glomerular basement membrane disorders. Sous la direction de Neil Turner. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0320_update_001.
Texte intégralGoligorsky, Michael S., Julien Maizel, Radovan Vasko, May M. Rabadi et Brian B. Ratliff. Pathophysiology of acute kidney injury. Sous la direction de Norbert Lameire. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0221.
Texte intégralChapitres de livres sur le sujet "Glomerular parietal epithelial cells"
Romagnani, Paola. « Parietal Epithelial Cells : Their Role in Health and Disease ». Dans Contributions to Nephrology, 23–36. Basel : KARGER, 2011. http://dx.doi.org/10.1159/000313943.
Texte intégralCarone, Frank A., Robert Bacallao et Yashpal S. Kanivar. « Pathogenesis of polycystic kidney disease : basement membrane and extracellular matrix ». Dans Polycystic Kidney Disease, 111–24. Oxford University PressNew York, NY, 1996. http://dx.doi.org/10.1093/oso/9780192625786.003.0005.
Texte intégralLee, Christine U., et James F. Glockner. « Case 13.8 ». Dans Mayo Clinic Body MRI Case Review, sous la direction de Christine U. Lee et James F. Glockner, 628–29. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199915705.003.0332.
Texte intégralEvans, Rhys D. R., et Stephen B. Walsh. « Renal involvement in primary Sjögren’s syndrome ». Dans Oxford Textbook of Sjögren's Syndrome, sous la direction de Elizabeth J. Price et Anwar R. Tappuni, 137–46. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780198806684.003.0017.
Texte intégralMoriyama, Takahito, Kazunori Karasawa et Kosaku Nitta. « The Role of Caveolae on Albumin Passage through Glomerular Endothelial and Epithelial Cells : The New Etiology of Urinary Albumin Excretion ». Dans Contributions to Nephrology, 1–11. S. Karger AG, 2018. http://dx.doi.org/10.1159/000486929.
Texte intégralActes de conférences sur le sujet "Glomerular parietal epithelial cells"
Azeloglu, Evren U., Mark Stothers, Thomas J. Deerinck, Cibele Falkenberg, Yibang Chen, John Cijiang He, James C. Hone, Leslie M. Loew, Mark H. Ellisman et Ravi Iyengar. « 3-D Quantitative Microanatomy of Rat Kidney Podocytes as Determined by Serial Block-Face Scanning Electron Microscopy ». Dans ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80650.
Texte intégralGyoneva, Lazarina, Mohammad F. Hadi, Yoav Segal, Kevin D. Dorfman et Victor H. Barocas. « Role of Lateral Interactions in Type IV Collagen Network Mechanics ». Dans ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14625.
Texte intégralStemeier, K., J. Mertin, J. Pill et F. Hartig. « EFFECTS OF THROMBOXANE RECEPTOR BLOCKER BM 13.505 ON THE DEVELOPMENT OF PROTEINURIA IN AUTOIMMUNE NZB/W MICE ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643757.
Texte intégral