Littérature scientifique sur le sujet « Global gravity »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Global gravity ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Global gravity"

1

Kallosh, Renata, Andrei Linde, Dmitri Linde et Leonard Susskind. « Gravity and global symmetries ». Physical Review D 52, no 2 (15 juillet 1995) : 912–35. http://dx.doi.org/10.1103/physrevd.52.912.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Katanaev, M. O. « Global solutions in gravity ». Nuclear Physics B - Proceedings Supplements 88, no 1-3 (juin 2000) : 233–36. http://dx.doi.org/10.1016/s0920-5632(00)00774-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mannheim, Philip D. « Local and global gravity ». Foundations of Physics 26, no 12 (décembre 1996) : 1683–709. http://dx.doi.org/10.1007/bf02282129.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bouman, Johannes, et Martin J. Fuchs. « GOCE gravity gradients versus global gravity field models ». Geophysical Journal International 189, no 2 (14 mars 2012) : 846–50. http://dx.doi.org/10.1111/j.1365-246x.2012.05428.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Dransfield, Mark. « Conforming Falcon gravity and the global gravity anomaly ». Geophysical Prospecting 58, no 3 (mai 2010) : 469–83. http://dx.doi.org/10.1111/j.1365-2478.2009.00830.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Paik, Ho Jung, Jurn-Sun Leung, Samuel H. Morgan et Joseph Parker. « Global gravity survey by an orbiting gravity gradiometer ». Eos, Transactions American Geophysical Union 69, no 48 (1988) : 1601. http://dx.doi.org/10.1029/88eo01211.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yale, Mara M., et D. T. Sandwell. « Stacked global satellite gravity profiles ». GEOPHYSICS 64, no 6 (novembre 1999) : 1748–55. http://dx.doi.org/10.1190/1.1444680.

Texte intégral
Résumé :
Gravity field recovery from satellite altimetry provides global marine coverage but lacks the accuracy and resolution needed for many exploration geophysics studies. The repeating ground tracks of the ERS-1/2, Geosat, and Topex/Poseidon altimeters offer the possibility of improving the accuracy and resolution of gravity anomalies along widely spaced (∼40-km spacing) tracks. However, complete ocean coverage is usually needed to convert the sea‐surface height (or along‐track slope) measurements into gravity anomalies. Here we develop and test a method for constructing stacked gravity profiles by using a published global gravity grid (Sandwell and Smith, 1997), V7.2, as a reference model for the slope‐to‐gravity anomaly conversion. The method is applied to stacks (averages) of Geosat/ERM (up to 62 cycles), ERS-1/2 (up to 43 cycles), and Topex (up to 142 cycles) satellite altimeter profiles. We assess the accuracies of the ERS-1/2 profiles through a comparison with a gravity model of the northern Gulf of Mexico (profiles provided by EDCON Inc.). The 40 ERS profiles evaluated have a mean rms difference of 3.77 mGal and full wavelength resolution (0.5 coherence) of 24 km. Our processing retains wavelengths as short as 10 km so smaller, large‐amplitude features can be resolved, especially in shallow ocean areas (<1000 m deep). We provide an example of combining these higher resolution profiles with lower resolution gravity data in the Caspian Sea.
Styles APA, Harvard, Vancouver, ISO, etc.
8

McNamee, J. B., N. J. Borderies et W. L. Sjogren. « Venus : Global gravity and topography ». Journal of Geophysical Research : Planets 98, E5 (25 mai 1993) : 9113–28. http://dx.doi.org/10.1029/93je00382.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sloss, Peter W. « Global marine gravity field map ». Eos, Transactions American Geophysical Union 68, no 39 (1987) : 770. http://dx.doi.org/10.1029/eo068i039p00770-03.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Surya, Sumati, et Sachindeo Vaidya. « Global anomalies in canonical gravity ». Nuclear Physics B 523, no 1-2 (juillet 1998) : 391–402. http://dx.doi.org/10.1016/s0550-3213(98)00286-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Global gravity"

1

Ceriotti, Matteo. « Global optimisation of multiple gravity assist trajectories ». Thesis, University of Glasgow, 2010. http://theses.gla.ac.uk/2003/.

Texte intégral
Résumé :
Multiple gravity assist (MGA) trajectories represent a particular class of space trajectories in which a spacecraft exploits the encounter with one or more celestial bodies to change its velocity vector; they have been essential to reach high Delta-v targets with low propellant consumption. The search for optimal transfer trajectories can be formulated as a mixed combinatorial-continuous global optimisation problem; however, it is known that the problem is difficult to solve, especially if deep space manoeuvres (DSM) are considered. This thesis addresses the automatic design of MGA trajectories through global search techniques, in answer to the requirements of having a large number of mission options in a short time, during the preliminary design phase. Two different approaches are presented. The first is a two-level approach: a number of feasible planetary sequences are initially generated; then, for each one, families of the MGA trajectories are built incrementally. The whole transfer is decomposed into sub-problems of smaller dimension and complexity, and the trajectory is progressively composed by solving one problem after the other. At each incremental step, a stochastic search identifies sets of feasible solutions: this region is preserved, while the rest of the search space is pruned out. The process iterates by adding one planet-to-planet leg at a time and pruning the unfeasible portion of the solution space. Therefore, when another leg is added to the trajectory, only the feasible set for the previous leg is considered and the search space is reduced. It is shown, through comparative tests, how the proposed incremental search performs an effective pruning of the search space, providing families of optimal solutions with a lower computational cost than a non-incremental approach. Known deterministic and stochastic methods are used for the comparison. The algorithm is applied to real MGA case studies, including the ESA missions BepiColombo and Laplace. The second approach performs an integrated search for the planetary sequence and the associated trajectories. The complete design of an MGA trajectory is formulated as an autonomous planning and scheduling problem. The resulting scheduled plan provides the planetary sequence for a MGA trajectory and a good estimation of the optimality of the associated trajectories. For each departure date, a full tree of possible transfers from departure to destination is generated. An algorithm inspired by Ant Colony Optimization (ACO) is devised to explore the space of possible plans. The ants explore the tree from departure to destination, adding one node at a time, using a probability function to select one of the feasible directions. Unlike standard ACO, a taboo-based heuristics prevents ants from re-exploring the same solutions. This approach is applied to the design of optimal transfers to Saturn (inspired by Cassini) and to Mercury, and it demonstrated to be very competitive against known traditional stochastic population-based techniques.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Dando, Owen Robert. « Topological defects in low-energy string gravity ». Thesis, Durham University, 1999. http://etheses.dur.ac.uk/4496/.

Texte intégral
Résumé :
Cosmologists are interested in topological defects as a possible source for the primordial density perturbations which seeded structure formation through gravitational instability. In this thesis, the gravitational properties of various topological defects are studied in the context of low-energy string theory, a likely modification of Einstein gravity at the high energy scales prevalent in the early universe. We consider in turn global monopole, local monopole, global cosmic string and global texture defects, allowing for an arbitrary coupling of defects to the string theory dilaton. For global defects we find the following behaviour. If the dilaton is massless, this modification to general relativity generically destroys the global good behaviour of the monopole and cosmic string, making their spacetimes singular. For the texture non-singular spacetimes exist, but only for certain values of the matter-dilaton coupling, dependent on the gravitational strength of the defect; in addition, this non-singular behaviour exists only in a certain frame. In the case of a massive dilaton, the metric behaviour of these defects is similar to that found in Einstein gravity, though we find they generically induce a long-range dilaton cloud. For the local monopole, which we study only in the presence of a massless dilaton, a rich variety of behaviour is found. For particular parameter values the local monopole spacetime approximates that of an extremal dilaton black hole.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Han, Shin-Chan. « Efficient global gravity field determination from satellite-to-satellite tracking ». Columbus, Ohio : Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1061995200.

Texte intégral
Résumé :
Thesis (Ph. D.)--Ohio State University, 2003.
Title from first page of PDF file. Document formatted into pages; contains xvii, 198 p.; also includes graphics (some col.). Includes abstract and vita. Advisor: Christopher Jekeli, Dept. of Geodetic Science and Surveying. Includes bibliographical references (p. 192-198).
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bai, Lu. « Effects of global financial crisis on Chinese export : a gravity model study ». Thesis, Internationella Handelshögskolan, Högskolan i Jönköping, IHH, Economics, Finance and Statistics, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-18297.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wöhr, Andreas J. [Verfasser], et Stefan [Akademischer Betreuer] Teufel. « Global Formalism of Loop Quantum Gravity / Andreas J. Wöhr ; Betreuer : Stefan Teufel ». Tübingen : Universitätsbibliothek Tübingen, 2014. http://d-nb.info/1163236373/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Werth, Susanna. « Calibration of the global hydrological model WGHM with water mass variations from GRACE gravity data ». Phd thesis, Universität Potsdam, 2010. http://opus.kobv.de/ubp/volltexte/2010/4173/.

Texte intégral
Résumé :
Since the start-up of the GRACE (Gravity Recovery And Climate Experiment) mission in 2002 time dependent global maps of the Earth's gravity field are available to study geophysical and climatologically-driven mass redistributions on the Earth's surface. In particular, GRACE observations of total water storage changes (TWSV) provide a comprehensive data set for analysing the water cycle on large scales. Therefore they are invaluable for validation and calibration of large-scale hydrological models as the WaterGAP Global Hydrology Model (WGHM) which simulates the continental water cycle including its most important components, such as soil, snow, canopy, surface- and groundwater. Hitherto, WGHM exhibits significant differences to GRACE, especially for the seasonal amplitude of TWSV. The need for a validation of hydrological models is further highlighted by large differences between several global models, e.g. WGHM, the Global Land Data Assimilation System (GLDAS) and the Land Dynamics model (LaD). For this purpose, GRACE links geodetic and hydrological research aspects. This link demands the development of adequate data integration methods on both sides, forming the main objectives of this work. They include the derivation of accurate GRACE-based water storage changes, the development of strategies to integrate GRACE data into a global hydrological model as well as a calibration method, followed by the re-calibration of WGHM in order to analyse process and model responses. To achieve these aims, GRACE filter tools for the derivation of regionally averaged TWSV were evaluated for specific river basins. Here, a decorrelation filter using GRACE orbits for its design is most efficient among the tested methods. Consistency in data and equal spatial resolution between observed and simulated TWSV were realised by the inclusion of all most important hydrological processes and an equal filtering of both data sets. Appropriate calibration parameters were derived by a WGHM sensitivity analysis against TWSV. Finally, a multi-objective calibration framework was developed to constrain model predictions by both river discharge and GRACE TWSV, realised with a respective evolutionary method, the ε-Non-dominated-Sorting-Genetic-Algorithm-II (ε-NSGAII). Model calibration was done for the 28 largest river basins worldwide and for most of them improved simulation results were achieved with regard to both objectives. From the multi-objective approach more reliable and consistent simulations of TWSV within the continental water cycle were gained and possible model structure errors or mis-modelled processes for specific river basins detected. For tropical regions as such, the seasonal amplitude of water mass variations has increased. The findings lead to an improved understanding of hydrological processes and their representation in the global model. Finally, the robustness of the results is analysed with respect to GRACE and runoff measurement errors. As a main conclusion obtained from the results, not only soil water and snow storage but also groundwater and surface water storage have to be included in the comparison of the modelled and GRACE-derived total water budged data. Regarding model calibration, the regional varying distribution of parameter sensitivity suggests to tune only parameter of important processes within each region. Furthermore, observations of single storage components beside runoff are necessary to improve signal amplitudes and timing of simulated TWSV as well as to evaluate them with higher accuracy. The results of this work highlight the valuable nature of GRACE data when merged into large-scale hydrological modelling and depict methods to improve large-scale hydrological models.
Das Schwerefeld der Erde spiegelt die Verteilung von Massen auf und unter der Erdoberfläche wieder. Umverteilungen von Erd-, Luft- oder Wassermassen auf unserem Planeten sind damit über eine kontinuierliche Vermessung des Erdschwerefeldes beobachtbar. Besonders Satellitenmissionen sind hierfür geeignet, da deren Umlaufbahn durch zeitliche und räumliche Veränderung der Schwerkraft beeinflusst wird. Seit dem Start der Satellitenmission GRACE (Gravity Recovery And Climate Experiment) im Jahr 2002 stellt die Geodäsie daher globale Daten von zeitlichen Veränderungen des Erdschwerefeldes mit hoher Genauigkeit zur Verfügung. Mit diesen Daten lassen sich geophysikalische und klimatologische Massenumverteilungen auf der Erdoberfläche studieren. GRACE liefert damit erstmals Beobachtungen von Variationen des gesamten kontinentalen Wasserspeichers, welche außerordentlich wertvoll für die Analyse des Wasserkreislaufes über große Regionen sind. Die Daten ermöglichen die Überprüfung von großräumigen mathematischen Modellen der Hydrologie, welche den natürlichen Kreislauf des Wassers auf den Kontinenten, vom Zeitpunkt des Niederschlags bis zum Abfluss in die Ozeane, nachvollziehbar machen. Das verbesserte Verständnis über Transport- und Speicherprozesse von Süßwasser ist für genauere Vorhersagen über zukünftige Wasserverfügbarkeit oder potentielle Naturkatastrophen, wie z.B. Überschwemmungen, von enormer Bedeutung. Ein globales Modell, welches die wichtigsten Komponenten des Wasserkreislaufes (Boden, Schnee, Interzeption, Oberflächen- und Grundwasser) berechnet, ist das "WaterGAP Global Hydrology Model" (WGHM). Vergleiche von berechneten und beobachteten Wassermassenvariationen weisen bisher insbesondere in der jährlichen Amplitude deutliche Differenzen auf. Sehr große Unterschiede zwischen verschiedenen hydrologischen Modellen betonen die Notwendigkeit, deren Berechnungen zu verbessern. Zu diesem Zweck verbindet GRACE die Wissenschaftsbereiche der Geodäsie und der Hydrologie. Diese Verknüpfung verlangt von beiden Seiten die Entwicklung geeigneter Methoden zur Datenintegration, welche die Hauptaufgaben dieser Arbeit darstellten. Dabei handelt es sich insbesondere um die Auswertung der GRACE-Daten mit möglichst hoher Genauigkeit sowie um die Entwicklung einer Strategie zur Integration von GRACE Daten in das hydrologische Modell. Mit Hilfe von GRACE wurde das Modell neu kalbriert, d.h. Parameter im Modell so verändert, dass die hydrologischen Berechnungen besser mit den GRACE Beobachtungen übereinstimmen. Dabei kam ein multikriterieller Kalibrieralgorithmus zur Anwendung mit dem neben GRACE-Daten auch Abflussmessungen einbezogen werden konnten. Die Modellkalibierung wurde weltweit für die 28 größten Flusseinzugsgebiete durchgeführt. In den meisten Fällen konnte eine verbesserte Berechnung von Wassermassenvariationen und Abflüssen erreicht werden. Hieraus ergeben sich, z.B. für tropische Regionen, größere saisonale Variationen. Die Ergebnisse führen zu einem verbesserten Verständnis hydrologischer Prozesse. Zum Schluss konnte die Robustheit der Ergebnisse gegenüber Fehlern in GRACE- und Abflussmessungen erfolgreich getestet werden. Nach den wichtigsten Schlussfolgerungen, die aus den Ergebnissen abgeleitet werden konnten, sind nicht nur Bodenfeuchte- und Schneespeicher, sondern auch Grundwasser- und Oberflächenwasserspeicher in Vergleiche von berechneten und GRACE-beobachteten Wassermassenvariationen einzubeziehen. Weiterhin sind neben Abflussmessungen zusätzlich Beobachtungen von weiteren hydrologischen Prozessen notwendig, um die Ergebnisse mit größerer Genauigkeit überprüfen zu können. Die Ergebnisse dieser Arbeit heben hervor, wie wertvoll GRACE-Daten für die großräumige Hydrologie sind und eröffnen eine Methode zur Verbesserung unseres Verständnisses des globalen Wasserkreislaufes.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wan, Mohd Akib Wan Abdul Aziz. « A preliminary determination of a gravimetric geoid in Peninsular Malaysia ». Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283665.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Beres, Jadwiga H. « Gravity waves generated by tropical convection : generation mechanisms and implications for global circulation models / ». Thesis, Connect to this title online ; UW restricted, 2002. http://hdl.handle.net/1773/10048.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Liu, Xianglin. « Global gravity field recovery from satellite-to-satellite tracking data with the acceleration approach / ». Delft : NCG Nederlandse Commissie voor Geodesie, 2008. http://opac.nebis.ch/cgi-bin/showAbstract.pl?u20=9789061323096.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bergmann-Wolf, Inga [Verfasser]. « Oceanographic applications of GRACE gravity data on global and regional scales / Inga Bergmann-Wolf ». Berlin : Freie Universität Berlin, 2016. http://d-nb.info/1082237965/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Global gravity"

1

Global gravity field modelling using satellite gravity gradiometry. Delft, The Netherlands : Nederlandse Commissie voor Geodesie, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Rapp, Richard H., Anny A. Cazenave et R. Steven Nerem, dir. Global Gravity Field and Its Temporal Variations. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61140-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Aldrovandi, Ruben. Teleparallel Gravity : An Introduction. Dordrecht : Springer Netherlands, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Francesco, Bonsante, dir. Canonical Wick rotations in 3-dimensional gravity. Providence, R.I : American Mathematical Society, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Dekle, Robert. Global rebalancing with gravity : Measuring the burden of adjustment. Cambridge, MA : National Bureau of Economic Research, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Poliakovsky, Arkady. Lorentzian Geometrical Structures with Global Time, Gravity and Electrodynamics. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-23762-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

1956-, Hamilton Kevin, North Atlantic Treaty Organization. Scientific Affairs Division. et NATO Advanced Research Workshop "Gravity Wave Processes and Their Parameterization in Global Climate Models" (1996 : Santa Fe, [New Mexico]), dir. Gravity wave processes : Their parameterization in global climate models. Berlin : Springer-Verlag, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

J, Bouman. Quality assessment of satellite-based global gravity field models. Delft : NCG, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Naeimi, Majid, et Jakob Flury, dir. Global Gravity Field Modeling from Satellite-to-Satellite Tracking Data. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49941-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Miropol'sky, Yu Z. Dynamics of Internal Gravity Waves in the Ocean. Dordrecht : Springer Netherlands, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Global gravity"

1

Aldrovandi, Ruben, et José Geraldo Pereira. « Global Formulation for Gravity ». Dans Teleparallel Gravity, 73–81. Dordrecht : Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5143-9_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pavlis, Nikolaos K. « Gravity, Global Models ». Dans Encyclopedia of Solid Earth Geophysics, 1–15. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_76-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pavlis, Nikolaos K. « Gravity, Global Models ». Dans Encyclopedia of Solid Earth Geophysics, 533–47. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8702-7_76.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Pavlis, Nikolaos K. « Gravity, Global Models ». Dans Encyclopedia of Solid Earth Geophysics, 677–91. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58631-7_76.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Barthelmes, Franz, Christoph Förste et E. Sinem Ince. « Global Gravity Field Models ». Dans Encyclopedia of Geodesy, 1–6. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-319-02370-0_43-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Marcantonio, Carla. « Conclusion : Of Gravity and Tears ». Dans Global Melodrama, 143–48. New York : Palgrave Macmillan US, 2015. http://dx.doi.org/10.1057/9781137528193_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zachara-Szymańska, Małgorzata. « Changing the Centre of Gravity ». Dans Global Political Leadership, 76–139. London : Routledge, 2022. http://dx.doi.org/10.4324/9781003166757-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kaula, W. M. « Global Harmonic and Statistical Analysis of Gravimetry ». Dans Gravity Anomalies : Unsurveyed Areas, 58–67. Washington, D.C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm009p0058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mcfarlane, N. « Gravity-Wave Drag ». Dans Numerical Modeling of the Global Atmosphere in the Climate System, 297–320. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4046-1_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Towhata, Ikuo, Thi Lan Anh Trinh et Suguru Yamada. « Exploring Non-gravity Geotechnics ». Dans Geotechnics and Earthquake Geotechnics Towards Global Sustainability, 215–30. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0470-1_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Global gravity"

1

Green, C. M., J. D. Fairhead, S. M. Masterton et P. J. Webb. « Residual Gravity for Plate Tectonic Modelling Based on Global Gravity Model Analysis ». Dans 76th EAGE Conference and Exhibition 2014. Netherlands : EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20141068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sandwell, D. T. « Improved global marine gravity by retracking altimeter waveforms ». Dans Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492). IEEE, 2003. http://dx.doi.org/10.1109/oceans.2003.178408.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Andersen, Ole B., P. Knudsen, P. A. M. Berry, S. Kenyon et N. Pavlis. « The DNSC07 high resolution global marine gravity field ». Dans SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, 2008. http://dx.doi.org/10.1190/1.3063756.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Horowitz, Franklin G., Gabriel Strykowski, Fabio Boschetti, Peter Hornby, Nick Archibald, Darren Holden, Peter Ketelaar et Robert Woodcock. « Earthworms ; “multiscale” edges in the EGM96 global gravity field ». Dans SEG Technical Program Expanded Abstracts 2000. Society of Exploration Geophysicists, 2000. http://dx.doi.org/10.1190/1.1816081.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Varga, Matej. « ANALYSIS OF SATELLITE BASED GLOBAL GRAVITY FIELD MODELS ON GNSS/LEVELLING AND REFERENCE GRAVITY STATIONS WORLDWIDE ». Dans 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/22/s09.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Daniels, R., et C. Green. « Production and Use of Global Topography Models in Gravity Compilations ». Dans 57th EAEG Meeting. Netherlands : EAGE Publications BV, 1995. http://dx.doi.org/10.3997/2214-4609.201409303.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

d, Luigi, et Michela Costa. « Global instability analysis of 2D liquid sheets flow under gravity ». Dans 2nd AIAA, Theoretical Fluid Mechanics Meeting. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-2596.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wang*, Meng, Junlu Wang et Changli Yao. « Discussion on the resolution of the global satellite gravity database ». Dans International Geophysical Conference, Qingdao, China, 17-20 April 2017. Society of Exploration Geophysicists and Chinese Petroleum Society, 2017. http://dx.doi.org/10.1190/igc2017-072.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Cheyney, Samuel, Kirsten Fletcher, Chris Green et Simon Campbell. « New global lake gravity from advances in satellite altimetry processing ». Dans SEG Technical Program Expanded Abstracts 2017. Society of Exploration Geophysicists, 2017. http://dx.doi.org/10.1190/segam2017-17732561.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Nucamendi, Ulises. « Global monopoles non-minimally coupled to gravity and astrophysical implications ». Dans Cosmology and particle physics. AIP, 2001. http://dx.doi.org/10.1063/1.1363543.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Global gravity"

1

Newell, Steven W. Global Takfiri Radicalization : A Center of Gravity Deconstruction. Fort Belvoir, VA : Defense Technical Information Center, octobre 2010. http://dx.doi.org/10.21236/ada535571.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Dekle, Robert, Jonathan Eaton et Samuel Kortum. Global Rebalancing with Gravity : Measuring the Burden of Adjustment. Cambridge, MA : National Bureau of Economic Research, mars 2008. http://dx.doi.org/10.3386/w13846.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ethridge, Joe E., et Jr. Center of Gravity Determination in the Global War on Terrorism. Fort Belvoir, VA : Defense Technical Information Center, mai 2004. http://dx.doi.org/10.21236/ada423285.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Smart, Cheryl L. The Global War on Terror : Mistaking Ideology as the Center of Gravity. Fort Belvoir, VA : Defense Technical Information Center, juillet 2005. http://dx.doi.org/10.21236/ada435894.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Haberkem, John L. The Global War on Terrorism : Idealogy as its Strategic Center of Gravity. Fort Belvoir, VA : Defense Technical Information Center, mars 2004. http://dx.doi.org/10.21236/ada423887.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Reilly, James. A Strategic Level Center for Gravity Analysis on the Global War on Terrorism. Fort Belvoir, VA : Defense Technical Information Center, avril 2002. http://dx.doi.org/10.21236/ada401641.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Metzger, E. J., Robert C. Rhodes, Dong S. Ko et Harley E. Hurlburt. Validation Test Report for OCEANS 1.0 : The 1/40 Global, Reduced Gravity NRL Layered Ocean Model. Fort Belvoir, VA : Defense Technical Information Center, juin 1998. http://dx.doi.org/10.21236/ada352049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Massotti, Luca, Günther March et Ilias Daras. Next Generation Gravity Mission as a Mass-change And Geosciences International Constellation (MAGIC) Mission Requirements Document. Sous la direction de Roger Haagmans et Lucia Tsaoussi. European Space Agency, octobre 2020. http://dx.doi.org/10.5270/esa.nasa.magic-mrd.2020.

Texte intégral
Résumé :
MAGIC is the joint NASA/ESA constellation concept based on NASA’s Mass Change Designated Observable (MCDO) and ESA’s Next Generation Gravity Missions (NGGM) studies. The main objective of MAGIC is to extend the mass transport time series of previous gravity missions such as GRACE and GRACE-FO with significantly enhanced accuracy, spatial and temporal resolutions and to demonstrate the operational capabilities of MAGIC with the goal of answering global user community needs to the greatest possible extent. This document defines unambiguous and traceable requirements for preparing and developing MAGIC. The scope of the MAGIC Mission Requirement Document includes end-to-end Earth observation system including user/scientific requirements, mission operations, data product development and processing, data distribution and data archiving. The intention of the document is also to accommodate results from NASA MCDO study, ESA Phase-0 NGGM and other national studies on future gravity missions. The MAGIC MRD is a NASA/ESA reference document frozen in its current version 1.0 that defines the mission requirements achievable by an optimised two-pair Bender-type constellation of a future implementation. Subsequent ESA and NASA official documents of updated implementation baseline will be traceable to the MAGIC MRD.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Roland-Holst, David, Kamalbek Karymshakov, Burulcha Sulaimanova et Kadyrbek Sultakeev. ICT, Online Search Behavior, and Remittances : Evidence from the Kyrgyz Republic. Asian Development Bank Institute, décembre 2022. http://dx.doi.org/10.56506/fepw3647.

Texte intégral
Résumé :
Infrastructure has always been a fundamental driver of long-term economic growth, but in recent decades information and communication technology (ICT) has supported and accelerated the growth of the global economy in ways beyond the imagining of our ancestors. We examine the role of ICT infrastructure in facilitating labor markets' access and remittance flows for workers from the Kyrgyz Republic. Using a combination of traditional high frequency macroeconomic data and real time internet search information from Google Trends, we take a novel approach to explaining the inflow of remittances to a developing country. In the first attempt to model remittance behavior with GTI data in this context, we use a gravity model. We also attempt to account for both origin and destination labor market conditions, using Kyrgyz language search words to identify both push and pull factors affecting migrant decisions.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Schmidt, Mark. Dynamics and variability of POC burial in depocenters of the North Sea (Skagerrak), Cruise No. AL561, 2.08.2021 – 13.08.2021, Kiel – Kiel, APOC. GEOMAR Helmholtz Centre for Ocean Research Kiel, 2021. http://dx.doi.org/10.3289/cr_al561.

Texte intégral
Résumé :
The AL561 cruise was conducted in the framework of the project APOC (“Anthropogenic impacts on Particulate Organic Carbon cycling in the North Sea”). This collaborative project between GEOMAR, AWI, HEREON, UHH, and BUND is to understand how particulate organic carbon (POC) cycling contributes to carbon sequestration in the North Sea and how this ecosystem service is compromised and interlinked with global change and a range of human pressures include fisheries (pelagic fisheries, bottom trawling), resource extraction (sand mining), sediment management (dredging and disposal of dredged sediments) and eutrophication. The main aim of the sampling activity during AL561 cruise was to recover undisturbed sediment from high accumulation sites in the Skagerrak/Kattegat and to subsample sediment/porewater at high resolution in order to investigate sedimentation transport processes, origin of sediment/POC and mineralization processes over the last 100- 200 years. Moreover, the actual processes of sedimentation and POC degradation in the water column and benthic layer will be addressed by sampling with CTD and Lander devices. In total 9 hydroacoustic surveys (59 profiles), 4 Gravity Corer, 7 Multicorer, 3 Lander and 4 CTD stations were successfully conducted during the AL561 cruise. - (Alkor-Berichte ; AL561)
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie