Articles de revues sur le sujet « Glass-ceramic sealant »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Glass-ceramic sealant.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Glass-ceramic sealant ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Gunawan, Sulistyo et Iwan Setyawan. « Progress in Glass-Ceramic Seal for Solid Oxide Fuel Cell Technology ». Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 82, no 1 (11 avril 2021) : 39–50. http://dx.doi.org/10.37934/arfmts.82.1.3950.

Texte intégral
Résumé :
Solid oxide fuel cells (SOFCs) have emerged as promising energy conversion devices nowadays. SOFC consists of several components such as cathode, anode, electrolyte, interconnects, and sealing materials. In planar SOFC stack construction, the sealant and interconnection functions play an important role. Glass and ceramics are quite popularly used as SOFC sealing materials to achieve several functions including preventing leakage of fuel and oxidants in the stack and electrically isolating cells in the stack. In this review, material preparation, material composition, ceramic properties especially thermal properties are compared from various systems that have been developed previously. The main challenges and complexities in the functional part of SOFC sealants include: (i) chemical incompatibility and instability in the oxidizing and reducing environment by adjusting the value of the thermal expansion coefficient (CTE) with the interconnecting material during SOFC operation, and (ii) insulation of oxidizing fuels and gases by matching CTE anode and cathode. Also, the sealant glass transition determines the maximum permissible working temperature of the SOFC. The choice of method and analysis will provide data on various ceramic attributes. The search for thermal attributes consisting of Glass transition (Tg), Deformation temp (Td), Crystallization temp (Tx), Melting pt (Tm) became a focus on SOFC sealant development.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lawita, Pornchanok, Apirat Theerapapvisetpong et Sirithan Jiemsirilers. « Effect of Bi2O3 on Thermal Properties of Barium-Free Glass-Ceramic Sealants in the CaO-MgO-B2O3-Al2O3-SiO2 System ». Key Engineering Materials 659 (août 2015) : 180–84. http://dx.doi.org/10.4028/www.scientific.net/kem.659.180.

Texte intégral
Résumé :
Barium-free glass-ceramic sealants for the planar solid oxide fuel cell (pSOFC) have attracted considerable attention to avoid the crystallization of the high coefficient of thermal expansion (CTE) BaCrO4; reaction product at the interface between barium-containing glass-ceramic sealants and Crofer22 APU interconnect, which decreases the long-term mechanical stability of the sealant. In this study, Barium-free glass-ceramic sealants in the CaO-MgO-B2O3-Al2O3-SiO2 system with varying amounts of Bi2O3 from 0 to 10 wt. % were prepared by conventional melting and their thermal properties were investigated. The glass transition temperature (Tg), dilatometric softening temperature, and coefficient of thermal expansion (CTE) were determined by a dilatometer. The Tg, onset of crystallization (Tx) and crystallization temperature (Tc) were obtained from DTA. Results of phase analysis by X–ray diffraction of glasses after thermal treatment at 900 oC for 2 h indicated that the major phase of all glasses was diopside (MgCaSi2O6) and minor phases were åkermanite (Ca2MgSi2O7) and forsterite (Mg2SiO4). The Tg of the fabricated glasses tended to decrease with increasing Bi2O3 content while the CTE of glasses increased after the thermal treatment and was in the range of requirement for SOFC sealant.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Javed, Hassan, Antonio Gianfranco Sabato, Mohsen Mansourkiaei, Domenico Ferrero, Massimo Santarelli, Kai Herbrig, Christian Walter et Federico Smeacetto. « Glass-Ceramic Sealants for SOEC : Thermal Characterization and Electrical Resistivity in Dual Atmosphere ». Energies 13, no 14 (17 juillet 2020) : 3682. http://dx.doi.org/10.3390/en13143682.

Texte intégral
Résumé :
A Ba-based glass-ceramic sealant is designed and tested for solid oxide electrolysis cell (SOEC) applications. A suitable SiO2/BaO ratio is chosen in order to obtain BaSi2O5 crystalline phase and subsequently favorable thermo-mechanical properties of the glass-ceramic sealant. The glass is analyzed in terms of thermal, thermo-mechanical, chemical, and electrical behavior. Crofer22APU-sealant-Crofer22APU joined samples are tested for 2000 h at 850 °C in a dual atmosphere test rig having reducing atmosphere of H2:H2O 50/50 (mol%) and under the applied voltage of 1.6 V. In order to simulate the SOEC dynamic working conditions, thermal cycles are performed during the long-term electrical resistivity test. The glass-ceramic shows promising behavior in terms of high density, suitable CTE, and stable electrical resistivity (106–107 Ω cm) under SOEC conditions. The SEM-EDS post mortem analysis confirms excellent chemical and thermo-mechanical compatibility of the glass-ceramic with Crofer22APU.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kingnoi, Namthip, Jiratchaya Ayawanna et Nattapol Laorodphan. « Barium (Zinc) Borosilicate Sealing Glass and Joining Interface with YSZ Electrolyte and Crofer22APU Interconnect in SOFCs ». Solid State Phenomena 283 (septembre 2018) : 72–77. http://dx.doi.org/10.4028/www.scientific.net/ssp.283.72.

Texte intégral
Résumé :
This work describes the performance of two glass-ceramic compositions, BaO-SiO2-B2O3 (Barium borosilicate glass: BaBS) and BaO-ZnO-SiO2-B2O3 (Barium zinc borosilicate glass: BaBS−Zn), used for joining YSZ ceramic electrolytes and Crofer22APU metallic interconnects in solid oxide fuel cells (SOFCs) working at 800°C for 50 h. ZnO had a negative effect on the thermal expansion coefficient (TEC) value of the BaBS-Zn glass-ceramic. XRD and SEM results revealed the formation of rod-shaped barium zinc silicate crystalline phases in the BaBS-Zn glass, which was accompanied by cracks and poor adherence at the YSZ/BaBS-Zn joint interface after working at 800°C for 50 h. The formation of cracks parallel to the interface between the Crofer22APU interconnect and the BaBS-Zn glass-ceramic sealant was observed due to the severe TEC mismatch. The BaBS glass–ceramic adhered well to the YSZ electrolyte as well as the pre-oxidized Crofer22APU without cracks. Chromium oxide scale developed between the pre-oxidized Crofer22APU/BaBS glass-ceramic joint interface with increasing the pre-oxidation temperature. This study shows that BaBS glass-ceramic is more effective than BaBS-Zn as a sealant for joining YSZ electrolytes and Crofer22APU metallic interconnects in SOFCs working at 800°C for 50 h.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ley, K. L., M. Krumpelt, R. Kumar, J. H. Meiser et I. Bloom. « Glass-ceramic sealants for solid oxide fuel cells : Part I. Physical properties ». Journal of Materials Research 11, no 6 (juin 1996) : 1489–93. http://dx.doi.org/10.1557/jmr.1996.0185.

Texte intégral
Résumé :
A family of sealant materials has been developed for use in the solid oxide fuel cell (SOFC) and in other applications in the temperature range of 800–1000 °C. These materials are based on glasses and glass-ceramics in the SrO–La2O3–Al2O3–B2O3–SiO2 system. The coefficients of thermal expansion (CTE) for these materials are in the range of 8–13 × 10−6/°C, a good match with those of the SOFC components. These sealant materials bond well with the ceramics of the SOFC and, more importantly, form bonds that can be thermally cycled without failure. At the fuel cell operating temperature, the sealants have viscosities in the range of 104–106 Pa-s, which allow them to tolerate a CTE mismatch of about 20% among the bonded substrates. The gas tightness of a sample seal was demonstrated in a simple zirconia-based oxygen concentration cell.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Haanappel, V. A. C., P. Batfalsky, S. M. Gross, L. G. J. de Haart, J. Malzbender, N. H. Menzler, V. Shemet, R. W. Steinbrech et I. C. Vinke. « A Comparative Study Between Resistance Measurements in Model Experiments and Solid Oxide Fuel Cell Stack Performance Tests ». Journal of Fuel Cell Science and Technology 4, no 1 (28 février 2006) : 11–18. http://dx.doi.org/10.1115/1.2393301.

Texte intégral
Résumé :
Several combinations of glass-ceramic and steel compositions with excellent chemical and physical properties have been tested in the past in solid oxide fuel cell (SOFC) stacks, but there have also been some combinations exhibiting pronounced chemical interactions causing severe stack degradation. Parallel to the examination of these degradation and short-circuiting phenomena in stack tests, recently less complex model experiments have been developed to study the interaction of glass-ceramic sealants and interconnect steels. The sealants and steels were tested in the model experiments at operation temperature using a dual air/hydrogen atmosphere similar to stack conditions. The present work compares electrochemical performance under constant current load of SOFC stack tests with the resistance changes in model experiments. In addition, microstructural results of post-operation inspection of various sealant–steel combinations are presented. The model experiments have shown that under the chosen experimental conditions, distinct changes of the specific resistance of the specimens correlate well with the changes of the electrochemical performance of SOFC stacks, indicating that this method can be considered as an excellent comparative method to provide useful information on the physical and chemical interactions between glass-ceramic sealants and ferritic steels.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gross, Sonja M., Thomas Koppitz, Josef Remmel, Jean-Bernard Bouche et Uwe Reisgen. « Joining properties of a composite glass-ceramic sealant ». Fuel Cells Bulletin 2006, no 9 (septembre 2006) : 12–15. http://dx.doi.org/10.1016/s1464-2859(06)71320-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Smeacetto, Federico, Auristela De Miranda, Andreas Chrysanthou, Enrico Bernardo, Michele Secco, Massimiliano Bindi, Milena Salvo, Antonio G. Sabato et Monica Ferraris. « Novel Glass-Ceramic Composition as Sealant for SOFCs ». Journal of the American Ceramic Society 97, no 12 (11 septembre 2014) : 3835–42. http://dx.doi.org/10.1111/jace.13219.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Laorodphan, Nattapol, et Jiratchaya Ayawanna. « BaO-Al2O3-SiO2-B2O3 Glass-Ceramic SOFCs Sealant : Effect of ZnO Additive ». Key Engineering Materials 751 (août 2017) : 455–60. http://dx.doi.org/10.4028/www.scientific.net/kem.751.455.

Texte intégral
Résumé :
The crystallization of planar solid oxide fuel cells (SOFCs) sealant glasses in the systems BaO-Al2O3-SiO2-B2O3 (BaBS) and BaO-Al2O3-SiO2-B2O3-ZnO (BaBS-Zn) was investigated via both X-ray diffractometer and scanning electron microscopy with energy dispersive spectroscopy. The effect of nucleation heat-treatment of the BaBS glass at different temperature for 5 hours, i.e. 550 and 590 °C, on the crystallization behavior was also studied. Thermal expansion profiles of the glasses indicate that both glasses have a low sealing temperature. XRD patterns of all BaBS glass-ceramics, devitrified at 800 °C for 30 hours, show that Ba2Si3O8, BaAl2Si2O8, Ba3B2O6 and some unknown crystalline phases were found. It was also found that crystalline size of unknown barium aluminosilicate with low silicon content depends on the nucleation heat-treatment temperature. For the ZnO-containing glass, ZnO reduces the coefficient of thermal expansion value of glass and causes the devitrification of large needle-like barium zinc silicate phases. The crack at the YSZ/BaBS-Zn glass-ceramic interface was also observed. Two barium silicate phases, which are BaZnSiO4 and BaZn2Si2O7 were devitrified in ZnO-containing glass-ceramic.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sohn, Sung-Bum, Se-Young Choi, Gyeung-Ho Kim, Hue-Sup Song et Goo-Dae Kim. « Suitable Glass-Ceramic Sealant for Planar Solid-Oxide Fuel Cells ». Journal of the American Ceramic Society 87, no 2 (février 2004) : 254–60. http://dx.doi.org/10.1111/j.1551-2916.2004.00254.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Reddy, Allu Amarnath, Neda Eghtesadi, Dilshat U. Tulyaganov, Maria J. Pascual, Luis F. Santos, Surendran Rajesh, Fernando M. B. Marques et José M. F. Ferreira. « Bi-layer glass-ceramic sealant for solid oxide fuel cells ». Journal of the European Ceramic Society 34, no 5 (mai 2014) : 1449–55. http://dx.doi.org/10.1016/j.jeurceramsoc.2013.11.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Javed, Hassan, Elisa Zanchi, Fabiana D’Isanto, Chiara Bert, Domenico Ferrero, Massimo Santarelli et Federico Smeacetto. « Novel SrO-Containing Glass-Ceramic Sealants for Solid Oxide Electrolysis Cells (SOEC) : Their Design and Characterization under Relevant Conditions ». Materials 15, no 17 (23 août 2022) : 5805. http://dx.doi.org/10.3390/ma15175805.

Texte intégral
Résumé :
This study presents results on the development of strontium oxide (SrO) containing glass sealants used to join Crofer22APU to yttria-stabilized zirconia (3YSZ), in which the main glass components, that is, silicon oxide (SiO2), strontium oxide (SrO), calcium oxide (CaO) and aluminum oxide (Al2O3), have been varied appropriately. Certain properties, such as the crystallization behavior, the coefficient of thermal expansion, adhesion, and reactivity of the sealants in contact with Crofer22APU, have been reviewed and discussed. The optimized glass composition (with CTE in the 9.8–10.3 × 10−6 K−1 range) results in a good joining behavior by hindering the formation of undesirable strontium chromate (SrCrO4) on contact with the Crofer22APU steel after 1000 h. at 850 °C. High specific resistivity values of about 106 Ohm.cm have been obtained, thus demonstrating good insulating properties at 850 °C under an applied voltage of 1.6 V. A negligible degradation in the electrical resistivity trend was measured during the test up to 1000 h, thus excluding the presence of detrimental reactions of the glass-ceramic sealant in contact with Crofer22APU under a dual atmosphere, as confirmed using SEM-EDS post-mortem analyses.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Sharif, Ahmed, Chee Lip Gan et Zhong Chen. « Customized glass sealant for ceramic substrates for high temperature electronic application ». Microelectronics Reliability 54, no 12 (décembre 2014) : 2905–10. http://dx.doi.org/10.1016/j.microrel.2014.07.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Sabato, A. G., M. Salvo, A. De Miranda, et F. Smeacetto. « Crystallization behaviour of glass-ceramic sealant for solid oxide fuel cells ». Materials Letters 141 (février 2015) : 284–87. http://dx.doi.org/10.1016/j.matlet.2014.11.128.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Silveira, R. E., R. G. Vivanco, R. C. de Morais, G. Da Col dos Santos Pinto et F. de C. P. Pires-de-Souza. « Bioactive glass ceramic can improve the bond strength of sealant/enamel ? » European Archives of Paediatric Dentistry 20, no 4 (22 mars 2019) : 325–31. http://dx.doi.org/10.1007/s40368-018-0409-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Smeacetto, F., M. Salvo, M. Santarelli, P. Leone, G. A. Ortigoza-Villalba, A. Lanzini, L. C. Ajitdoss et M. Ferraris. « Performance of a glass-ceramic sealant in a SOFC short stack ». International Journal of Hydrogen Energy 38, no 1 (janvier 2013) : 588–96. http://dx.doi.org/10.1016/j.ijhydene.2012.07.025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

OHARA, Satoshi, Kazuo MUKAI, Takehisa FUKUI, Yoshinori SAKAKI, Masatoshi HATTORI et Yoshimi ESAKI. « A New Sealant Material for Solid Oxide Fuel Cells Using Glass-Ceramic. » Journal of the Ceramic Society of Japan 109, no 1267 (2001) : 186–90. http://dx.doi.org/10.2109/jcersj.109.1267_186.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Malzbender, J., Y. Zhao et T. Beck. « Fracture and creep of glass–ceramic solid oxide fuel cell sealant materials ». Journal of Power Sources 246 (janvier 2014) : 574–80. http://dx.doi.org/10.1016/j.jpowsour.2013.08.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Smeacetto, F., A. Chrysanthou, M. Salvo, T. Moskalewicz, F. D'Herin Bytner, L. C. Ajitdoss et M. Ferraris. « Thermal cycling and ageing of a glass-ceramic sealant for planar SOFCs ». International Journal of Hydrogen Energy 36, no 18 (septembre 2011) : 11895–903. http://dx.doi.org/10.1016/j.ijhydene.2011.04.083.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Gross-Barsnick, S. M., C. Babelot, D. Federmann et U. Pabst. « Optimization of Tensile Strength Measurements on Glass-Ceramic Sealant Used for SOFC Stacks ». ECS Transactions 68, no 1 (17 juillet 2015) : 2573–82. http://dx.doi.org/10.1149/06801.2573ecst.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Menzler, Norbert H., Doris Sebold, Mohsine Zahid, Sonja M. Gross et Thomas Koppitz. « Interaction of metallic SOFC interconnect materials with glass–ceramic sealant in various atmospheres ». Journal of Power Sources 152 (décembre 2005) : 156–67. http://dx.doi.org/10.1016/j.jpowsour.2005.02.072.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Smeacetto, F., A. De Miranda, A. Ventrella, M. Salvo et M. Ferraris. « Shear strength tests of glass ceramic sealant for solid oxide fuel cells applications ». Advances in Applied Ceramics 114, sup1 (10 juillet 2015) : S70—S75. http://dx.doi.org/10.1179/1743676115y.0000000042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Bakal, Ahmet, et Mahmut D. Mat. « A novel two-layered glass-ceramic sealant design for solid oxide fuel cells ». International Journal of Energy Research 41, no 5 (18 octobre 2016) : 628–36. http://dx.doi.org/10.1002/er.3639.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Reddy, Allu Amarnath, Ashutosh Goel, Dilshat U. Tulyaganov, Saurabh Kapoor, K. Pradeesh, Maria J. Pascual et José M. F. Ferreira. « Study of calcium–magnesium–aluminum–silicate (CMAS) glass and glass-ceramic sealant for solid oxide fuel cells ». Journal of Power Sources 231 (juin 2013) : 203–12. http://dx.doi.org/10.1016/j.jpowsour.2012.12.055.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Spotorno, Roberto, Marlena Ostrowska, Simona Delsante, Ulf Dahlmann et Paolo Piccardo. « Characterization of Glass-Ceramic Sealant for Solid Oxide Fuel Cells at Operating Conditions by Electrochemical Impedance Spectroscopy ». Materials 13, no 21 (22 octobre 2020) : 4702. http://dx.doi.org/10.3390/ma13214702.

Texte intégral
Résumé :
A commercially available glass-ceramic composition is applied on a ferritic stainless steel (FSS) substrate reproducing a type of interface present in solid oxide fuel cells (SOFCs) stacks. Electrochemical impedance spectroscopy (EIS) is used to study the electrical response of the assembly in the temperature range of 380–780 °C and during aging for 250 h at 780 °C. Post-experiment analyses, performed by means of X-ray diffraction (XRD), and along cross-sections by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis, highlight the microstructural changes promoted by aging conditions over time. In particular, progressive crystallization of the glass-ceramic, high temperature corrosion of the substrate and diffusion of Fe and Cr ions from the FSS substrate into the sealant influence the electrical response of the system under investigation. The electrical measurements show an increase in conductivity to 5 × 10−6 S∙cm−1, more than one order of magnitude below the maximum recommended value.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Meinhardt, K. D., D. S. Kim, Y. S. Chou et K. S. Weil. « Synthesis and properties of a barium aluminosilicate solid oxide fuel cell glass–ceramic sealant ». Journal of Power Sources 182, no 1 (juillet 2008) : 188–96. http://dx.doi.org/10.1016/j.jpowsour.2008.03.079.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Lin, Chih-Kuang, Jun-Yu Chen, Jie-Wun Tian, Lieh-Kwang Chiang et Si-Han Wu. « Joint strength of a solid oxide fuel cell glass–ceramic sealant with metallic interconnect ». Journal of Power Sources 205 (mai 2012) : 307–17. http://dx.doi.org/10.1016/j.jpowsour.2012.01.048.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Wang, Ruifang, Zhe Lü, Chaoqian Liu, Ruibin Zhu, Xiqiang Huang, Bo Wei, Na Ai et Wenhui Su. « Characteristics of a SiO2–B2O3–Al2O3–BaCO3–PbO2–ZnO glass–ceramic sealant for SOFCs ». Journal of Alloys and Compounds 432, no 1-2 (avril 2007) : 189–93. http://dx.doi.org/10.1016/j.jallcom.2006.05.105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Celik, Selahattin. « Influential parameters and performance of a glass-ceramic sealant for solid oxide fuel cells ». Ceramics International 41, no 2 (mars 2015) : 2744–51. http://dx.doi.org/10.1016/j.ceramint.2014.10.089.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Chao, Chih-Long, Chun-Lin Chu, Yiin-Kuen Fuh, Ray-Quen Hsu, Shyong Lee et Yung-Neng Cheng. « Joint strength of Ag–9Pd–9Ga brazed interconnect and anode-supported electrolyte for solid-oxide fuel cell applications ». Proceedings of the Institution of Mechanical Engineers, Part L : Journal of Materials : Design and Applications 232, no 9 (27 avril 2016) : 749–60. http://dx.doi.org/10.1177/1464420716647077.

Texte intégral
Résumé :
A newly developed Ag–9Pd–9Ga active filler was vacuum brazed, and the mechanical properties between the metallic interconnects (SS430, Crofer22 APU, Crofer22 H) and a Ni–yttria-stabilized zirconia cermet anode were systematically investigated. The results indicate that the bonding between metal and cermet is well established and that the interface is smooth. The joint strength evaluated at both 25 ℃ and 800 ℃ under shear and tensile loading conditions confirmed that the brazed Ag–9Pd–9Ga sealant compared favorably with its commercially available glass-ceramic GC-9 counterpart.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Chen, Kun-Yi, Chih-Kuang Lin, Si-Han Wu, Chien-Kuo Liu et Ruey-Yi Lee. « Thermo-Mechanical Fatigue of SOFC Glass-Ceramic Sealant/Steel Interconnect Joint in a Reducing Atmosphere ». ECS Transactions 91, no 1 (10 juillet 2019) : 2323–29. http://dx.doi.org/10.1149/09101.2323ecst.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Sabato, A. G., G. Cempura, D. Montinaro, A. Chrysanthou, M. Salvo, E. Bernardo, M. Secco et F. Smeacetto. « Glass-ceramic sealant for solid oxide fuel cells application : Characterization and performance in dual atmosphere ». Journal of Power Sources 328 (octobre 2016) : 262–70. http://dx.doi.org/10.1016/j.jpowsour.2016.08.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Rangel-Hernández, V. H., Q. Fang, C. Babelot, R. Lohoff et L. Blum. « An experimental investigation of fracture processes in glass-ceramic sealant by means of acoustic emission ». International Journal of Hydrogen Energy 45, no 51 (octobre 2020) : 27539–50. http://dx.doi.org/10.1016/j.ijhydene.2020.07.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Lawita, Pornchanok, Apirat Theerapapvisetpong et Sirithan Jiemsirilers. « Influence of Bi2O3 on Crystalline Phase Content and Thermal Properties of Åkermanite and Diopside Based Glass-Ceramic Sealant for SOFCs ». Key Engineering Materials 751 (août 2017) : 483–88. http://dx.doi.org/10.4028/www.scientific.net/kem.751.483.

Texte intégral
Résumé :
Solid oxide fuel cell (SOFC) is an electrochemical energy conversion device which is considered as clean energy source generator with reliability and relatively inexpensive production cost. One of the most important components for planar design SOFC is the hermetic seal that prevents fuel from leaking out of between the stack of fuel cells. Glass-ceramics are attractive materials as sealing materials for this device. The expected coefficient of thermal expansion (CTE) of the glass-ceramic sealants should be between 9 and 12 x 10−6 K−1. Glass – ceramics based on åkermanite (Ca2MgSi2O7) crystalline phase were reported their high CTE value from about 10 to 11.3 x 10−6 K−1. In this study, glass compositions in the CaO-MgO-B2O3-Al2O3-SiO2 system with varying amounts of Bi2O3 from 0 to 10 wt. % were prepared by conventional melting and investigated their properties. The selected compositions were derived from ternary åkermanite–forsterite–anorthite phase diagram. Phase composition and quantitative phase analysis of glass–ceramics were examined by X-ray diffractometer. The onset of crystallization (Tx) and crystallization temperature (Tc) were measured by DTA. The thermal properties of bulk glass samples and heat treated samples at 900 oC for 2 h which were glass transition temperature (Tg), dilatometric softening temperature (Ts), and coefficient of thermal expansion (CTE) were determined by dilatometer. Furthermore, the long-term stability of their CTE was investigated. The samples were continued to soak at 800 °C for 100 h and observed their change in CTE value. The results found that the åkermanite phase tended to increase with increasing amount of Bi2O3 content.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Garai, Mrinmoy, C. Hari Venkateswara Rao et Basudeb Karmakar. « Nanocrystalline microstructure in Sm3+ and Gd3+ doped K2O–MgO–Al2O3–SiO2–F glass-ceramic sealant (SOFC) ». Materials Advances 1, no 3 (2020) : 463–68. http://dx.doi.org/10.1039/d0ma00179a.

Texte intégral
Résumé :
In order to demonstrate the effects of Sm3+ and Gd3+ ions on the crystalline microstructures of the magnesium-boro-alumino-silicate (MBAS) system, the K2O–MgO–B2O3–Al2O3–SiO2–F glass doped with 0–5 mol% Sm2O3 and Gd2O3 were synthesized by melt-quenching (1550 °C).
Styles APA, Harvard, Vancouver, ISO, etc.
36

Lin, Chih-Kuang, Kun-Liang Lin, Jing-Hong Yeh, Wei-Hong Shiu, Chien-Kuo Liu et Ruey-Yi Lee. « Aging effects on high-temperature creep properties of a solid oxide fuel cell glass-ceramic sealant ». Journal of Power Sources 241 (novembre 2013) : 12–19. http://dx.doi.org/10.1016/j.jpowsour.2013.04.088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Smeacetto, F., M. Salvo, P. Leone, M. Santarelli et M. Ferraris. « Performance and testing of joined Crofer22APU-glass-ceramic sealant-anode supported cell in SOFC relevant conditions ». Materials Letters 65, no 6 (mars 2011) : 1048–52. http://dx.doi.org/10.1016/j.matlet.2010.12.050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Fakouri Hasanabadi, M., J. Malzbender, S. M. Groß-Barsnick, H. Abdoli, A. H. Kokabi et M. A. Faghihi-Sani. « Micro-scale evolution of mechanical properties of glass-ceramic sealant for solid oxide fuel/electrolysis cells ». Ceramics International 47, no 3 (février 2021) : 3884–91. http://dx.doi.org/10.1016/j.ceramint.2020.09.250.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Liu, Wenning N., Xin Sun, Brian Koeppel et Mohammad Khaleel. « Experimental Study of the Aging and Self-Healing of the Glass/Ceramic Sealant Used in SOFCs ». International Journal of Applied Ceramic Technology 7, no 1 (janvier 2010) : 22–29. http://dx.doi.org/10.1111/j.1744-7402.2009.02417.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Lin, Chih-Kuang, Kun-Liang Lin, Jing-Hong Yeh, Si-Han Wu et Ruey-Yi Lee. « Creep rupture of the joint of a solid oxide fuel cell glass–ceramic sealant with metallic interconnect ». Journal of Power Sources 245 (janvier 2014) : 787–95. http://dx.doi.org/10.1016/j.jpowsour.2013.07.047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Lin, Chih-Kuang, Kun-Yi Chen, Si-Han Wu, Wei-Hong Shiu, Chien-Kuo Liu et Ruey-Yi Lee. « Mechanical durability of solid oxide fuel cell glass-ceramic sealant/steel interconnect joint under thermo-mechanical cycling ». Renewable Energy 138 (août 2019) : 1205–13. http://dx.doi.org/10.1016/j.renene.2019.02.041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Ghosh, Saswati, P. Kundu, A. Das Sharma, R. N. Basu et H. S. Maiti. « Microstructure and property evaluation of barium aluminosilicate glass–ceramic sealant for anode-supported solid oxide fuel cell ». Journal of the European Ceramic Society 28, no 1 (janvier 2008) : 69–76. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.05.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Ishikawa, Takashi, N. Suzuki, Ian J. Davies, M. Shibuya, T. Hirokawa et J. Gotoh. « Creep Behavior and Modeling of SiC-Based PC Ceramic Matrix Composites with Glass Sealant in High Temperature Air ». Key Engineering Materials 164-165 (juillet 1998) : 197–200. http://dx.doi.org/10.4028/www.scientific.net/kem.164-165.197.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Hou, Fan-Lin, Chih-Kuang Lin, Atsushi Sugeta, Hiroyuki Akebono, Si-Han Wu, Peng Yang et Ruey-Yi Lee. « Thermal Aging Effect on the Joint Strength between an SOFC Glass-Ceramic Sealant and LSM-Coated Metallic Interconnect ». ECS Transactions 78, no 1 (30 mai 2017) : 1721–29. http://dx.doi.org/10.1149/07801.1721ecst.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Lin, Chih-Kuang, Wei-Hong Shiu, Si-Han Wu, Chien-Kuo Liu et Ruey-Yi Lee. « Interfacial fracture resistance of the joint of a solid oxide fuel cell glass–ceramic sealant with metallic interconnect ». Journal of Power Sources 261 (septembre 2014) : 227–37. http://dx.doi.org/10.1016/j.jpowsour.2014.03.079.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Lin, Chih-Kuang, Yu-An Liu, Si-Han Wu, Chien-Kuo Liu et Ruey-Yi Lee. « Joint strength of a solid oxide fuel cell glass–ceramic sealant with metallic interconnect in a reducing environment ». Journal of Power Sources 280 (avril 2015) : 272–88. http://dx.doi.org/10.1016/j.jpowsour.2015.01.126.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Pascual, M. J., A. Guillet et A. Durán. « Optimization of glass–ceramic sealant compositions in the system MgO–BaO–SiO2 for solid oxide fuel cells (SOFC) ». Journal of Power Sources 169, no 1 (juin 2007) : 40–46. http://dx.doi.org/10.1016/j.jpowsour.2007.01.040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Liu, Wenning N., Xin Sun, Brian Koeppel, Elizabeth Stephens et Mohammad A. Khaleel. « Creep Behavior of Glass/Ceramic Sealant and its Effect on Long-Term Performance of Solid Oxide Fuel Cells ». International Journal of Applied Ceramic Technology 8, no 1 (14 octobre 2009) : 49–59. http://dx.doi.org/10.1111/j.1744-7402.2009.02455.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Smeacetto, Federico, Auristela De Miranda, Sandra Cabanas Polo, Sebastian Molin, Dino Boccaccini, Milena Salvo et Aldo R. Boccaccini. « Electrophoretic deposition of Mn1.5Co1.5O4 on metallic interconnect and interaction with glass-ceramic sealant for solid oxide fuel cells application ». Journal of Power Sources 280 (avril 2015) : 379–86. http://dx.doi.org/10.1016/j.jpowsour.2015.01.120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Sabato, A. G., A. Chrysanthou, M. Salvo, G. Cempura et F. Smeacetto. « Interface stability between bare, Mn Co spinel coated AISI 441 stainless steel and a diopside-based glass-ceramic sealant ». International Journal of Hydrogen Energy 43, no 3 (janvier 2018) : 1824–34. http://dx.doi.org/10.1016/j.ijhydene.2017.11.150.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie