Sommaire
Littérature scientifique sur le sujet « Gibbs-type priors »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Gibbs-type priors ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Gibbs-type priors"
Bacallado, S., M. Battiston, S. Favaro et L. Trippa. « Sufficientness Postulates for Gibbs-Type Priors and Hierarchical Generalizations ». Statistical Science 32, no 4 (novembre 2017) : 487–500. http://dx.doi.org/10.1214/17-sts619.
Texte intégralDe Blasi, Pierpaolo, Stefano Favaro, Antonio Lijoi, Ramses H. Mena, Igor Prunster et Matteo Ruggiero. « Are Gibbs-Type Priors the Most Natural Generalization of the Dirichlet Process ? » IEEE Transactions on Pattern Analysis and Machine Intelligence 37, no 2 (février 2015) : 212–29. http://dx.doi.org/10.1109/tpami.2013.217.
Texte intégralFavaro, Stefano, et Lancelot F. James. « A note on nonparametric inference for species variety with Gibbs-type priors ». Electronic Journal of Statistics 9, no 2 (2015) : 2884–902. http://dx.doi.org/10.1214/15-ejs1096.
Texte intégralAlotaibi, Refah, H. Rezk et Sanku Dey. « MCMC Method for Exponentiated Lomax Distribution based on Accelerated Life Testing with Type I Censoring ». WSEAS TRANSACTIONS ON MATHEMATICS 20 (5 juillet 2021) : 319–34. http://dx.doi.org/10.37394/23206.2021.20.33.
Texte intégralWang, Liang, Sanku Dey et Yogesh Mani Tripathi. « Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples ». Mathematics 10, no 12 (19 juin 2022) : 2137. http://dx.doi.org/10.3390/math10122137.
Texte intégralElshahhat, Ahmed, Ritwik Bhattacharya et Heba S. Mohammed. « Survival Analysis of Type-II Lehmann Fréchet Parameters via Progressive Type-II Censoring with Applications ». Axioms 11, no 12 (7 décembre 2022) : 700. http://dx.doi.org/10.3390/axioms11120700.
Texte intégralBassetti, Federico, et Lucia Ladelli. « Mixture of Species Sampling Models ». Mathematics 9, no 23 (4 décembre 2021) : 3127. http://dx.doi.org/10.3390/math9233127.
Texte intégralFeroze, Navid, Ali Al-Alwan, Muhammad Noor-ul-Amin, Shajib Ali et R. Alshenawy. « Bayesian Estimation for the Doubly Censored Topp Leone Distribution using Approximate Methods and Fuzzy Type of Priors ». Journal of Function Spaces 2022 (19 mars 2022) : 1–15. http://dx.doi.org/10.1155/2022/4816748.
Texte intégralKOSTANJČAR, ZVONKO, et BRANKO JEREN. « EMERGENCE OF POWER-LAW AND TWO-PHASE BEHAVIOR IN FINANCIAL MARKET FLUCTUATIONS ». Advances in Complex Systems 16, no 01 (mars 2013) : 1350008. http://dx.doi.org/10.1142/s0219525913500082.
Texte intégralLuckhaus, Stephan. « Solutions for the two-phase Stefan problem with the Gibbs–Thomson Law for the melting temperature ». European Journal of Applied Mathematics 1, no 2 (juin 1990) : 101–11. http://dx.doi.org/10.1017/s0956792500000103.
Texte intégralThèses sur le sujet "Gibbs-type priors"
CORRADIN, RICCARDO. « Contributions to modelling via Bayesian nonparametric mixtures ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241261.
Texte intégralBayesian nonparametric mixtures are flexible models for density estimation and clustering, nowadays a standard tool in the toolbox of applied statisticians. The first proposal of such models was the Dirichlet process (DP) (Ferguson, 1973) mixture of Gaussian kernels by Lo (1984), contribution which paved the way to the definition of a wide variety of nonparametric mixture models. In recent years, increasing interest has been dedicated to the definition of mixture models based on nonparametric mixing measures that go beyond the DP. Among these measures, the Pitman-Yor process (PY) (Perman et al., 1992; Pitman, 1995) and, more in general, the class of Gibbs-type priors (see e.g. De Blasi et al., 2015) stand out for conveniently combining mathematical tractability, interpretability and modelling flexibility. In this thesis we investigate three aspects of nonparametric mixture models, which, in turn, concern their modelling, computational and distributional properties. The thesis is organized as follows. The first chapter proposes a coincise review of the area of Bayesian nonparametric statistics, with focus on tools and models that will be considered in the following chapters. We first introduce the notions of exchangeability, exchangeable partitions and discrete random probability measures. We then focus on the DP and the PY case, main ingredients of second and third chapter, respectively. Finally, we briefly discuss the rationale behind the definition of more general classes of discrete nonparametric priors. In the second chapter we propose a thorough study on the effect of invertible affine transformations of the data on the posterior distribution of DP mixture models, with particular attention to DP mixtures of Gaussian kernels (DPM-G). First, we provide an explicit result relating model parameters and transformations of the data. Second, we formalize the notion of asymptotic robustness of a model under affine transformations of the data and prove an asymptotic result which, by relying on the asymptotic consistency of DPM-G models, show that, under mild assumptions on the data-generating distribution, DPM-G are asymptotically robust. The third chapter presents the ICS, a novel conditional sampling scheme for PY mixture models, based on a useful representation of the posterior distribution of a PY (Pitman, 1996) and on an importance sampling idea, similar in spirit to the augmentation step of the celebrated Algorithm 8 of Neal (2000). The proposed method conveniently combines the best features of state-of-the-art conditional and marginal methods for PY mixture models. Importantly, and unlike its most popular conditional competitors, the numerical efficiency of the ICS is robust to the specification of the parameters of the PY. The steps for implementing the ICS are described in detail and its performance is compared with that one of popular competing algorithms. Finally, the ICS is used as a building block for devising a new efficient algorithm for the class of GM-dependent DP mixture models (Lijoi et al., 2014a; Lijoi et al., 2014b), for partially exchangeable data. In the fourth chapter we study some distributional properties Gibbs-type priors. The main result focuses on an exchangeable sample from a Gibbs-type prior and provides a conveniently simple description of the distribution of the size of the cluster the ( m + 1 ) th observation is assigned to, given an unobserved sample of size m. The study of such distribution provides the tools for a simple, yet useful, strategy for prior elicitation of the parameters of a Gibbs-type prior, in the context of Gibbs-type mixture models. The results in the last three chapters are supported by exhaustive simulation studies and illustrated by analysing astronomical datasets.