Littérature scientifique sur le sujet « Geometry of PDEs »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Geometry of PDEs ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Geometry of PDEs"

1

Prástaro, Agostino. « Geometry of PDEs ». Journal of Mathematical Analysis and Applications 319, no 2 (juillet 2006) : 547–66. http://dx.doi.org/10.1016/j.jmaa.2005.06.044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pràstaro, Agostino. « Quantum geometry of super PDEs ». Reports on Mathematical Physics 37, no 1 (février 1996) : 23–140. http://dx.doi.org/10.1016/0034-4877(96)88921-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gutt, Jan, Gianni Manno et Giovanni Moreno. « Geometry of Lagrangian Grassmannians and nonlinear PDEs ». Banach Center Publications 117 (2019) : 9–44. http://dx.doi.org/10.4064/bc117-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Marsden, Jerrold E., George W. Patrick et Steve Shkoller. « Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs ». Communications in Mathematical Physics 199, no 2 (1 décembre 1998) : 351–95. http://dx.doi.org/10.1007/s002200050505.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Savin, Ovidiu, et Enrico Valdinoci. « Elliptic PDEs with Fibered Nonlinearities ». Journal of Geometric Analysis 19, no 2 (14 janvier 2009) : 420–32. http://dx.doi.org/10.1007/s12220-008-9064-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Vitagliano, Luca. « Characteristics, bicharacteristics and geometric singularities of solutions of PDEs ». International Journal of Geometric Methods in Modern Physics 11, no 09 (octobre 2014) : 1460039. http://dx.doi.org/10.1142/s0219887814600391.

Texte intégral
Résumé :
Many physical systems are described by partial differential equations (PDEs). Determinism then requires the Cauchy problem to be well-posed. Even when the Cauchy problem is well-posed for generic Cauchy data, there may exist characteristic Cauchy data. Characteristics of PDEs play an important role both in Mathematics and in Physics. I will review the theory of characteristics and bicharacteristics of PDEs, with a special emphasis on intrinsic aspects, i.e. those aspects which are invariant under general changes of coordinates. After a basically analytic introduction, I will pass to a modern, geometric point of view, presenting characteristics within the jet space approach to PDEs. In particular, I will discuss the relationship between characteristics and singularities of solutions and observe that: "wave-fronts are characteristic surfaces and propagate along bicharacteristics". This remark may be understood as a mathematical formulation of the wave/particle duality in optics and/or quantum mechanics. The content of the paper reflects the three-hour mini-course that I gave at the XXII International Fall Workshop on Geometry and Physics, September 2–5, 2013, Évora, Portugal.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Krantz, Steven G., et Vicentiu D. Radulescu. « Perspectives of Geometric Analysis in PDEs ». Journal of Geometric Analysis 30, no 2 (1 novembre 2019) : 1411. http://dx.doi.org/10.1007/s12220-019-00303-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vinogradov, A. M. « Some remarks on contact manifolds, Monge–Ampère equations and solution singularities ». International Journal of Geometric Methods in Modern Physics 11, no 07 (août 2014) : 1460026. http://dx.doi.org/10.1142/s0219887814600263.

Texte intégral
Résumé :
We describe some natural relations connecting contact geometry, classical Monge–Ampère equations (MAEs) and theory of singularities of solutions to nonlinear PDEs. They reveal the hidden meaning of MAEs and sheds new light on some aspects of contact geometry.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Engwer, Christian, et Sebastian Westerheide. « An Unfitted dG Scheme for Coupled Bulk-Surface PDEs on Complex Geometries ». Computational Methods in Applied Mathematics 21, no 3 (1 juin 2021) : 569–91. http://dx.doi.org/10.1515/cmam-2020-0056.

Texte intégral
Résumé :
Abstract The unfitted discontinuous Galerkin (UDG) method allows for conservative dG discretizations of partial differential equations (PDEs) based on cut cell meshes. It is hence particularly suitable for solving continuity equations on complex-shaped bulk domains. In this paper based on and extending the PhD thesis of the second author, we show how the method can be transferred to PDEs on curved surfaces. Motivated by a class of biological model problems comprising continuity equations on a static bulk domain and its surface, we propose a new UDG scheme for bulk-surface models. The method combines ideas of extending surface PDEs to higher-dimensional bulk domains with concepts of trace finite element methods. A particular focus is given to the necessary steps to retain discrete analogues to conservation laws of the discretized PDEs. A high degree of geometric flexibility is achieved by using a level set representation of the geometry. We present theoretical results to prove stability of the method and to investigate its conservation properties. Convergence is shown in an energy norm and numerical results show optimal convergence order in bulk/surface H 1 {H^{1}} - and L 2 {L^{2}} -norms.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tünger, Çetin, et Şule Taşlı Pektaş. « A comparison of the cognitive actions of designers in geometry-based and parametric design environments ». Open House International 45, no 1/2 (17 juin 2020) : 87–101. http://dx.doi.org/10.1108/ohi-04-2020-0008.

Texte intégral
Résumé :
Purpose This paper aims to compare designers’ cognitive behaviors in geometry-based modeling environments (GMEs) and parametric design environments (PDEs). Design/methodology/approach This study used Rhinoceros as the geometric and Grasshopper as the parametric design tool in an experimental setting. Designers’ cognitive behaviors were investigated by using the retrospective protocol analysis method with a content-oriented approach. Findings The results indicated that the participants performed more cognitive actions per minute in the PDE because of the extra algorithmic space that such environments include. On the other hand, the students viewed their designs more and focused more on product–user relation in the geometric modeling environment. While the students followed a top-down process and produced less number of topologically different design alternatives with the parametric design tool, they had more goal setting activities and higher number of alternative designs in the geometric modeling environment. Originality/value This study indicates that cognitive behaviors of designers in GMEs and PDEs differ significantly and these differences entail further attention from researchers and educators.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Geometry of PDEs"

1

DE, PONTI NICOLÒ. « Optimal transport : entropic regularizations, geometry and diffusion PDEs ». Doctoral thesis, Università degli studi di Pavia, 2019. http://hdl.handle.net/11571/1292130.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Marini, Michele. « Some problems in convex analysis across geometry and PDEs ». Doctoral thesis, Scuola Normale Superiore, 2016. http://hdl.handle.net/11384/86213.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Athanasopoulos, Michael, Hassan Ugail et Castro Gabriela Gonzalez. « Parametric design of aircraft geometry using partial differential equations ». Elsevier, 2009. http://hdl.handle.net/10454/2725.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ugail, Hassan. « Time-dependent shape parameterisation of complex geometry using PDE surfaces ». Nashboro Press, 2004. http://hdl.handle.net/10454/2686.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Yang, Weiye. « Stochastic analysis and stochastic PDEs on fractals ». Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:43a7af74-c531-424a-9f3d-4277138affbb.

Texte intégral
Résumé :
Stochastic analysis on fractals is, as one might expect, a subfield of analysis on fractals. An intuitive starting point is to observe that on many fractals, one can define diffusion processes whose law is in some sense invariant with respect to the symmetries and self-similarities of the fractal. These can be interpreted as fractal-valued counterparts of standard Brownian motion on Rd. One can study these diffusions directly, for example by computing heat kernel and hitting time estimates. On the other hand, by associating the infinitesimal generator of the fractal-valued diffusion with the Laplacian on Rd, it is possible to pose stochastic partial differential equations on the fractal such as the stochastic heat equation and stochastic wave equation. In this thesis we investigate a variety of questions concerning the properties of diffusions on fractals and the parabolic and hyperbolic SPDEs associated with them. Key results include an extension of Kolmogorov's continuity theorem to stochastic processes indexed by fractals, and existence and uniqueness of solutions to parabolic SPDEs on fractals with Lipschitz data.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Li, Siran. « Analysis of several non-linear PDEs in fluid mechanics and differential geometry ». Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:20866cbb-e5ab-4a6b-b9dc-88a247d15572.

Texte intégral
Résumé :
In the thesis we investigate two problems on Partial Differential Equations (PDEs) in differential geometry and fluid mechanics. First, we prove the weak L p continuity of the Gauss-Codazzi-Ricci (GCR) equations, which serve as a compatibility condition for the isometric immersions of Riemannian and semi-Riemannian manifolds. Our arguments, based on the generalised compensated compactness theorems established via functional and micro-local analytic methods, are intrinsic and global. Second, we prove the vanishing viscosity limit of an incompressible fluid in three-dimensional smooth, curved domains, with the kinematic and Navier boundary conditions. It is shown that the strong solution of the Navier-Stokes equation in H r+1 (r > 5/2) converges to the strong solution of the Euler equation with the kinematic boundary condition in H r, as the viscosity tends to zero. For the proof, we derive energy estimates using the special geometric structure of the Navier boundary conditions; in particular, the second fundamental form of the fluid boundary and the vorticity thereon play a crucial role. In these projects we emphasise the linkages between the techniques in differential geometry and mathematical hydrodynamics.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ugail, Hassan, M. I. G. Bloor et M. J. Wilson. « Manipulation of PDE surfaces using an interactively defined parameterisation ». Elsevier, 1999. http://hdl.handle.net/10454/2669.

Texte intégral
Résumé :
No
Manipulation of PDE surfaces using a set of interactively defined parameters is considered. The PDE method treats surface design as a boundary-value problem and ensures that surfaces can be defined using an appropriately chosen set of boundary conditions and design parameters. Here we show how the data input to the system, from a user interface such as the mouse of a computer terminal, can be efficiently used to define a set of parameters with which to manipulate the surface interactively in real time.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ugail, Hassan, et A. Sourin. « Partial differential equations for function based geometry modelling within visual cyberworlds ». IEEE Computer Society, 2008. http://hdl.handle.net/10454/2612.

Texte intégral
Résumé :
We propose the use of Partial Differential Equations (PDEs) for shape modelling within visual cyberworlds. PDEs, especially those that are elliptic in nature, enable surface modelling to be defined as boundary-value problems. Here we show how the PDE based on the Biharmonic equation subject to suitable boundary conditions can be used for shape modelling within visual cyberworlds. We discuss an analytic solution formulation for the Biharmonic equation which allows us to define a function based geometry whereby the resulting geometry can be visualised efficiently at arbitrary levels of shape resolutions. In particular, we discuss how function based PDE surfaces can be readily integrated within VRML and X3D environments
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mascellani, Giovanni. « Fourth-order geometric flows on manifolds with boundary ». Doctoral thesis, Scuola Normale Superiore, 2017. http://hdl.handle.net/11384/85715.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Elyan, Eyad, et Hassan Ugail. « Reconstruction of 3D human facial images using partial differential equations ». Academy Publisher, 2007. http://hdl.handle.net/10454/2644.

Texte intégral
Résumé :
One of the challenging problems in geometric modeling and computer graphics is the construction of realistic human facial geometry. Such geometry are essential for a wide range of applications, such as 3D face recognition, virtual reality applications, facial expression simulation and computer based plastic surgery application. This paper addresses a method for the construction of 3D geometry of human faces based on the use of Elliptic Partial Differential Equations (PDE). Here the geometry corresponding to a human face is treated as a set of surface patches, whereby each surface patch is represented using four boundary curves in the 3-space that formulate the appropriate boundary conditions for the chosen PDE. These boundary curves are extracted automatically using 3D data of human faces obtained using a 3D scanner. The solution of the PDE generates a continuous single surface patch describing the geometry of the original scanned data. In this study, through a number of experimental verifications we have shown the efficiency of the PDE based method for 3D facial surface reconstruction using scan data. In addition to this, we also show that our approach provides an efficient way of facial representation using a small set of parameters that could be utilized for efficient facial data storage and verification purposes.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Geometry of PDEs"

1

Bahns, Dorothea, Wolfram Bauer et Ingo Witt, dir. Quantization, PDEs, and Geometry. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22407-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Geometry of PDEs and mechanics. Singapore : World Scientific, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Cabré, Xavier, Antoine Henrot, Daniel Peralta-Salas, Wolfgang Reichel et Henrik Shahgholian. Geometry of PDEs and Related Problems. Sous la direction de Chiara Bianchini, Antoine Henrot et Rolando Magnanini. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95186-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kycia, Radosław A., Maria Ułan et Eivind Schneider, dir. Nonlinear PDEs, Their Geometry, and Applications. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17031-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Barbara, Opozda, Simon Udo 1938-, Wiehe Martin et Stefan Banach International Mathematical Center., dir. PDEs, submanifolds and affine differential geometry. Warszawa : Polish Academy of Sciences, Institute of Mathematics, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Martin, Wiehe, Simon Udo 1938-, Opozda Barbara et Stefan Banach International Mathematical Center., dir. PDEs, submanifolds, and affine differential geometry. Warszawa : Polish Academy of Sciences, Institute of Mathematics, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wiehe, Martin. PDEs, submanifolds and affine differential geometry. Sous la direction de Stefan Banach International Mathematical Center. Warszawa : Polish Academy of Sciences, Institute of Mathematics, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Druet, Olivier. Blow-up theory for elliptic PDEs in Riemannian geometry. Princeton, NJ : Princeton University Press, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Olivier·, Druet·. Blow-up theory for elliptic PDEs in Riemannian geometry. Princeton· NJ : Princeton University Press·, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Capogna, Luca, Pengfei Guan, Cristian E. Gutiérrez et Annamaria Montanari. Fully Nonlinear PDEs in Real and Complex Geometry and Optics. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00942-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Geometry of PDEs"

1

Gursky, Matthew J. « PDEs in Conformal Geometry ». Dans Geometric Analysis and PDEs, 1–33. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01674-5_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yang, Paul. « Minimal Surfaces in CR Geometry ». Dans Geometric Analysis and PDEs, 253–73. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01674-5_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gramchev, Todor. « Gelfand–Shilov Spaces : Structural Properties and Applications to Pseudodifferential Operators in ℝ n ». Dans Quantization, PDEs, and Geometry, 1–68. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22407-7_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Engliš, Miroslav. « An Excursion into Berezin–Toeplitz Quantization and Related Topics ». Dans Quantization, PDEs, and Geometry, 69–115. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22407-7_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Comech, Andrew. « Global Attraction to Solitary Waves ». Dans Quantization, PDEs, and Geometry, 117–52. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22407-7_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Markina, Irina. « Geodesics in Geometry with Constraints and Applications ». Dans Quantization, PDEs, and Geometry, 153–314. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22407-7_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kersten, P., I. S. Krasil′shchik, A. M. Verbovetsky et R. Vitolo. « Hamiltonian Structures for General PDEs ». Dans Differential Equations - Geometry, Symmetries and Integrability, 187–98. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00873-3_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Greiner, Peter C. « Sub-Riemannian Geometry and Subelliptic PDEs ». Dans Partial Differential Equations and Mathematical Physics, 105–10. Boston, MA : Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0011-6_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Prástaro, Agostino. « The Maslov Index in PDEs Geometry ». Dans Essays in Mathematics and its Applications, 311–59. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31338-2_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lychagin, Valentin V. « Contact Geometry, Measurement, and Thermodynamics ». Dans Nonlinear PDEs, Their Geometry, and Applications, 3–52. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17031-8_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Geometry of PDEs"

1

Oliker, Vladimir I. « On the geometry of convex reflectors ». Dans PDEs, Submanifolds and Affine Differential Geometry. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Li, H. Z. « Variational problems and PDEs in affine differential geometry ». Dans PDEs, Submanifolds and Affine Differential Geometry. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc69-0-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Belkhelfa, Mohamed, Franki Dillen et Jun-ichi Inoguchi. « Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces ». Dans PDEs, Submanifolds and Affine Differential Geometry. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Djorić, Mirjana, et Masafumi Okumura. « CR submanifolds of maximal CR dimension in complex manifolds ». Dans PDEs, Submanifolds and Affine Differential Geometry. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gálvez, J. A., et A. Martínez. « Hypersurfaces with constant curvature in Rn+1 ». Dans PDEs, Submanifolds and Affine Differential Geometry. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gollek, Hubert. « Natural algebraic representation formulas for curves in C3 ». Dans PDEs, Submanifolds and Affine Differential Geometry. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Musso, Emilio, et Lorenzo Nicolodi. « Darboux transforms of Dupin surfaces ». Dans PDEs, Submanifolds and Affine Differential Geometry. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Cortés, Vicente. « A holomorphic representation formula for parabolic hyperspheres ». Dans PDEs, Submanifolds and Affine Differential Geometry. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Simon, Udo, Konrad Voss, Luc Vrancken et Martin Wiehe. « Surfaces with prescribed Weingarten operator ». Dans PDEs, Submanifolds and Affine Differential Geometry. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Belkhelfa, Mohamed, Ryszard Deszcz, Małgorzata Głogowska, Marian Hotloś, Dorota Kowalczyk et Leopold Verstraelen. « On some type of curvature conditions ». Dans PDEs, Submanifolds and Affine Differential Geometry. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Geometry of PDEs"

1

Moreno, Giovanni. A Natural Geometric Framework for the Space of Initial Data of Nonlinear PDEs. GIQ, 2012. http://dx.doi.org/10.7546/giq-13-2012-245-257.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yau, Stephen S. PDE, Differential Geometric and Algebraic Methods in Nonlinear Filtering. Fort Belvoir, VA : Defense Technical Information Center, janvier 1993. http://dx.doi.org/10.21236/ada260967.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yau, Stephen S. PDE, Differential Geometric and Algebraic Methods for Nonlinear Filtering. Fort Belvoir, VA : Defense Technical Information Center, février 1996. http://dx.doi.org/10.21236/ada310330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tannenbaum, Allen R. Geometric PDE's and Invariants for Problems in Visual Control Tracking and Optimization. Fort Belvoir, VA : Defense Technical Information Center, janvier 2005. http://dx.doi.org/10.21236/ada428955.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Yau, Stephen S. T. PDE, Differential Geometric, Algebraic, Wavelet and Parallel Computation Methods in Nonlinear Filtering. Fort Belvoir, VA : Defense Technical Information Center, juin 2003. http://dx.doi.org/10.21236/ada415460.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie