Littérature scientifique sur le sujet « Geometric finiteness »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Geometric finiteness ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Geometric finiteness"
Lück, Wolfgang. « The Geometric Finiteness Obstruction ». Proceedings of the London Mathematical Society s3-54, no 2 (mars 1987) : 367–84. http://dx.doi.org/10.1112/plms/s3-54.2.367.
Texte intégralSwarup, G. A. « Geometric finiteness and rationality ». Journal of Pure and Applied Algebra 86, no 3 (mai 1993) : 327–33. http://dx.doi.org/10.1016/0022-4049(93)90107-5.
Texte intégralTuschmann, Wilderich. « Geometric diffeomorphism finiteness in low dimensions and homotopy group finiteness ». Mathematische Annalen 322, no 2 (février 2002) : 413–20. http://dx.doi.org/10.1007/s002080100281.
Texte intégralScott, G. P., et G. A. Swarup. « Geometric finiteness of certain Kleinian groups ». Proceedings of the American Mathematical Society 109, no 3 (1 mars 1990) : 765. http://dx.doi.org/10.1090/s0002-9939-1990-1013981-6.
Texte intégralGrove, Karsten, Peter Petersen et Jyh-Yang Wu. « Geometric finiteness theorems via controlled topology ». Inventiones Mathematicae 99, no 1 (décembre 1990) : 205–13. http://dx.doi.org/10.1007/bf01234417.
Texte intégralKapovich, Michael, et Beibei Liu. « Geometric finiteness in negatively pinched Hadamard manifolds ». Annales Academiae Scientiarum Fennicae Mathematica 44, no 2 (juin 2019) : 841–75. http://dx.doi.org/10.5186/aasfm.2019.4444.
Texte intégralTorroba, Gonzalo. « Finiteness of flux vacua from geometric transitions ». Journal of High Energy Physics 2007, no 02 (21 février 2007) : 061. http://dx.doi.org/10.1088/1126-6708/2007/02/061.
Texte intégralProctor, Emily. « Orbifold homeomorphism finiteness based on geometric constraints ». Annals of Global Analysis and Geometry 41, no 1 (24 mai 2011) : 47–59. http://dx.doi.org/10.1007/s10455-011-9270-4.
Texte intégralDurumeric, Oguz C. « Geometric finiteness in large families in dimension 3 ». Topology 40, no 4 (juillet 2001) : 727–37. http://dx.doi.org/10.1016/s0040-9383(99)00080-4.
Texte intégralGrove, Karsten, Peter Petersen V et Jyh-Yang Wu. « Erratum to Geometric finiteness theorems via controlled topology ». Inventiones mathematicae 104, no 1 (décembre 1991) : 221–22. http://dx.doi.org/10.1007/bf01245073.
Texte intégralThèses sur le sujet "Geometric finiteness"
Fléchelles, Balthazar. « Geometric finiteness in convex projective geometry ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.
Texte intégralThis thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
Kuckuck, Benno. « Finiteness properties of fibre products ». Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:a9624d17-9d11-4bd0-8c46-78cbba73469c.
Texte intégralBowditch, B. H. « Geometrical finiteness for hyperbolic groups ». Thesis, University of Warwick, 1988. http://wrap.warwick.ac.uk/99188/.
Texte intégralPassaro, Davide. « Finiteness of Complete Intersection Calabi Yau Threefolds ». Thesis, Uppsala universitet, Teoretisk fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-394987.
Texte intégralMarseglia, Stéphane. « Variétés projectives convexes de volume fini ». Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD019/document.
Texte intégralIn this thesis, we study strictly convex projective manifolds of finite volume. Such a manifold is the quotient G\U of a properly convex open subset U of the real projective space RP^(n-1) by a discrete torsionfree subgroup G of SLn(R) preserving U. We study the Zariski closure of holonomies of convex projective manifolds of finite volume. For such manifolds G\U, we show that either the Zariski closure of G is SLn(R) or it is a conjugate of SO(1,n-1).We also focuss on the moduli space of strictly convex projective structures of finite volume. We show that this moduli space is a closed set of the representation space
Hung, Min Kai, et 洪旻楷. « On the finiteness of geometric knots ». Thesis, 2010. http://ndltd.ncl.edu.tw/handle/14407283257393717053.
Texte intégral國立臺灣師範大學
數學系
98
In these paper, we consider several properties of Normal Projection Energy. Firstly, among the class of $C^{1,1}$-smooth knots, the upper bound of Normal Projection Energy gives a uniform lower bound of Gromov's distorsion of knots. Secondly, Normal Projection Energy is bounded by the product of total curvature and ropelength. Thirdly, to prove the bound of Normal Projection Energy, we study the curves which attain the infimum of the total absolute curvature in the set of curves contained in a ball with fixed endpoints and length.
« Survey on the finiteness results in geometric analysis on complete manifolds ». 2010. http://library.cuhk.edu.hk/record=b5894429.
Texte intégralThesis (M.Phil.)--Chinese University of Hong Kong, 2010.
Includes bibliographical references (leaves 102-105).
Abstracts in English and Chinese.
Chapter 0 --- Introduction --- p.6
Chapter 1 --- Background knowledge --- p.9
Chapter 1.1 --- Comparison theorems --- p.9
Chapter 1.2 --- Bochner techniques --- p.13
Chapter 1.3 --- Eigenvalue estimates for Laplacian operator --- p.14
Chapter 1.4 --- Spectral theory for Schrodinger operator on Rieman- nian manifolds --- p.16
Chapter 2 --- Vanishing theorems --- p.20
Chapter 2.1 --- Liouville type theorem for Lp subharmonic functions --- p.20
Chapter 2.2 --- Generalized type of vanishing theorem --- p.21
Chapter 3 --- Finite dimensionality results --- p.28
Chapter 3.1 --- Three types of integral inequalities --- p.28
Chapter 3.2 --- Weak Harnack inequality --- p.34
Chapter 3.3 --- Li's abstract finite dimensionality theorem --- p.37
Chapter 3.4 --- Applications of the finite dimensionality theorem --- p.42
Chapter 4 --- Ends of Riemannian manifolds --- p.48
Chapter 4.1 --- Green's function --- p.48
Chapter 4.2 --- Ends and harmonic functions --- p.53
Chapter 4.3 --- Some topological applications --- p.72
Chapter 5 --- Splitting theorems --- p.79
Chapter 5.1 --- Splitting theorems for manifolds with non-negative Ricci curvature --- p.79
Chapter 5.2 --- Splitting theorems for manifolds of Ricci curvature with a negative lower bound --- p.83
Chapter 5.3 --- Manifolds with the maximal possible eigenvalue --- p.93
Bibliography --- p.102
Livres sur le sujet "Geometric finiteness"
Marco, Rigoli, et Setti Alberto G. 1960-, dir. Vanishing and finiteness results in geometric analysis : A generalization of the Bochner technique. Basel : Birkhauser, 2008.
Trouver le texte intégralSession, Ring Theory. Ring theory and its applications : Ring Theory Session in honor of T.Y. Lam on his 70th birthday at the 31st Ohio State-Denison Mathematics Conference, May 25-27, 2012, The Ohio State University, Columbus, OH. Sous la direction de Lam, T. Y. (Tsit-Yuen), 1942- honouree, Huynh, Dinh Van, 1947- editor of compilation et Ohio State-Denison Mathematics Conference. Providence, Rhode Island : American Mathematical Society, 2014.
Trouver le texte intégralVanishing and Finiteness Results in Geometric Analysis. Basel : Birkhäuser Basel, 2008. http://dx.doi.org/10.1007/978-3-7643-8642-9.
Texte intégralPigola, Stefano, Marco Rigoli et Alberto G. Setti. Vanishing and Finiteness Results in Geometric Analysis : A Generalization of the Bochner Technique. Springer London, Limited, 2008.
Trouver le texte intégralWitzel, Stefan. Finiteness Properties of Arithmetic Groups Acting on Twin Buildings. Springer London, Limited, 2014.
Trouver le texte intégralFiniteness Properties of Arithmetic Groups Acting on Twin Buildings. Springer, 2014.
Trouver le texte intégralHrushovski, Ehud, et François Loeser. Non-Archimedean Tame Topology and Stably Dominated Types (AM-192). Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161686.001.0001.
Texte intégralAbbes, Ahmed, et Michel Gros. Representations of the fundamental group and the torsor of deformations. Global aspects. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691170282.003.0003.
Texte intégralRings with Polynomial Identities and Finite Dimensional Representations of Algebras. American Mathematical Society, 2020.
Trouver le texte intégralChapitres de livres sur le sujet "Geometric finiteness"
Katz, Nicholas M., Serge Lang et Kenneth A. Ribet. « Finiteness Theorems in Geometric Classfield Theory ». Dans Collected Papers Volume III, 101–35. New York, NY : Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-2116-6_9.
Texte intégralLang, Serge. « Finiteness Theorems in Geometric Classfield Theory ». Dans Springer Collected Works in Mathematics, 101–35. New York, NY : Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4614-6324-5_9.
Texte intégralSuciu, Alexander I. « Geometric and homological finiteness in free abelian covers ». Dans Configuration Spaces, 461–501. Pisa : Scuola Normale Superiore, 2012. http://dx.doi.org/10.1007/978-88-7642-431-1_21.
Texte intégralAndrzejewski, Pawel. « Equivariant finiteness obstruction and its geometric applications - A survey ». Dans Lecture Notes in Mathematics, 20–37. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0084735.
Texte intégralSchlomiuk, Dana. « Aspects of planar polynomial vector fields : global versus local, real versus complex, analytic versus algebraic and geometric ». Dans Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, 471–509. Dordrecht : Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-1025-2_13.
Texte intégralGörtz, Ulrich, et Torsten Wedhorn. « Finiteness Conditions ». Dans Algebraic Geometry I, 241–85. Wiesbaden : Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9722-0_11.
Texte intégralFaltings, Gerd. « Finiteness Theorems for Abelian Varieties over Number Fields ». Dans Arithmetic Geometry, 9–26. New York, NY : Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4613-8655-1_2.
Texte intégralZarhin, Yuri G. « Finiteness theorems for dimensions of irreducible λ-adic representations ». Dans Arithmetic Algebraic Geometry, 431–44. Boston, MA : Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0457-2_20.
Texte intégralBesson, Gérard, et Gilles Courtois. « Compactness and Finiteness Results for Gromov-Hyperbolic Spaces ». Dans Surveys in Geometry I, 205–68. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86695-2_6.
Texte intégralOllivier, François. « Canonical Bases : Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms ». Dans Effective Methods in Algebraic Geometry, 379–400. Boston, MA : Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0441-1_25.
Texte intégralActes de conférences sur le sujet "Geometric finiteness"
Koike, Satoshi. « Finiteness theorems on Blow-Nash triviality for real algebraic singularities ». Dans Geometric Singularity Theory. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc65-0-10.
Texte intégralBejan, Adrian, et Sylvie Lorente. « A Course on Flow-System Configuration and Multi-Scale Design ». Dans ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59203.
Texte intégralMartinez, Rudolph, Brent S. Paul, Morgan Eash et Carina Ting. « A Three-Dimensional Wiener-Hopf Technique for General Bodies of Revolution : Part 1—Theory ». Dans ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13344.
Texte intégral