Littérature scientifique sur le sujet « Geomagnetic field variations »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Geomagnetic field variations ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Geomagnetic field variations"

1

Sutcliffe, P. R. « The development of a regional geomagnetic daily variation model using neural networks ». Annales Geophysicae 18, no 1 (31 janvier 2000) : 120–28. http://dx.doi.org/10.1007/s00585-000-0120-0.

Texte intégral
Résumé :
Abstract. Global and regional geomagnetic field models give the components of the geomagnetic field as functions of position and epoch; most utilise a polynomial or Fourier series to map the input variables to the geomagnetic field values. The only temporal variation generally catered for in these models is the long term secular variation. However, there is an increasing need amongst certain users for models able to provide shorter term temporal variations, such as the geomagnetic daily variation. In this study, for the first time, artificial neural networks (ANNs) are utilised to develop a geomagnetic daily variation model. The model developed is for the southern African region; however, the method used could be applied to any other region or even globally. Besides local time and latitude, input variables considered in the daily variation model are season, sunspot number, and degree of geomagnetic activity. The ANN modelling of the geomagnetic daily variation is found to give results very similar to those obtained by the synthesis of harmonic coefficients which have been computed by the more traditional harmonic analysis of the daily variation.Key words. Geomagnetism and paleomagnetism (time variations; diurnal to secular) · Ionosphere (modelling and forecasting)
Styles APA, Harvard, Vancouver, ISO, etc.
2

Peddie, Norman W. « International Geomagnetic Reference Field Revision 1985 ». GEOPHYSICS 51, no 4 (avril 1986) : 1020–23. http://dx.doi.org/10.1190/1.1442144.

Texte intégral
Résumé :
IAGA Division I, Working Group 1 deals with the topic “Analysis of the Main Field and Secular Variations.” One of the more important functions of the working group is the periodic revision of the International Geomagnetic Reference Field (IGRF). The thirteen members of the working group have professional interests covering a broad spectrum of geomagnetic science, including the theory and practice of geomagnetic analysis and modeling, the theory of the origin of the magnetic fields of the Earth and other bodies, the theory of geomagnetic secular variation, the application of field models in magnetic survey data processing, and geomagnetic charting.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Воробьев, Андрей, Andrey Vorobev, Вячеслав Пилипенко, Vyacheslav Pilipenko, Ярослав Сахаров, Yaroslav Sakharov, Василий Селиванов et Vasiliy Selivanov. « Statistical relationships between variations of the geomagnetic field, auroral electrojet, and geomagnetically induced currents ». Solar-Terrestrial Physics 5, no 1 (22 mars 2019) : 35–42. http://dx.doi.org/10.12737/stp-51201905.

Texte intégral
Résumé :
Using observations from the IMAGE magnetic observatories and the station for recording geomagnetically induced currents (GIC) in the electric transmission line in 2015, we examine relationships between geomagnetic field and GIC variations. The GIC intensity is highly correlated (R>0.7) with the field variability |dB/dt| and closely correlated with variations in the time derivatives of X and Y components. Daily variations in the mean geomagnetic field variability |dB/dt| and GIC intensity have a wide night maximum, associated with the electrojet, and a wide morning maximum, presumably caused by intense Pc5–Pi3 geomagnetic pulsations. We have constructed a regression linear model to estimate GIC from the time derivative of the geomagnetic field and AE index. Statistical distributions of the probability density of the AE index, geomagnetic field derivative, and GIC correspond to the log-normal law. The constructed distributions are used to evaluate the probabilities of extreme values of GIC and |dB/dt|.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Trichtchenko, L., et D. H. Boteler. « Modelling of geomagnetic induction in pipelines ». Annales Geophysicae 20, no 7 (31 juillet 2002) : 1063–72. http://dx.doi.org/10.5194/angeo-20-1063-2002.

Texte intégral
Résumé :
Abstract. Geomagnetic field variations induce telluric currents in pipelines, which modify the electrochemical conditions at the pipe/soil interface, possibly contributing to corrosion of the pipeline steel. Modelling of geomagnetic induction in pipelines can be accomplished by combining several techniques. Starting with geomagnetic field data, the geoelectric fields in the absence of the pipeline were calculated using the surface impedance derived from a layered-Earth conductivity model. The influence of the pipeline on the electric fields was then examined using an infinitely long cylinder (ILC) model. Pipe-to-soil potentials produced by the electric field induced in the pipeline were calculated using a distributed source transmission line (DSTL) model. The geomagnetic induction process is frequency dependent; therefore, the calculations are best performed in the frequency domain, using a Fourier transform to go from the original time domain magnetic data, and an inverse Fourier transform at the end of the process, to obtain the pipe-to-soil potential variation in the time domain. Examples of the model calculations are presented and compared to observations made on a long pipeline in the auroral zone.Key words. Geomagnetism and paleomagnetism (geo-magnetic induction)
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kilifarska, Natalya, Antonia Mokreva et Tsvetelina Velichkova. « North Atlantic Oscillation and Variations of Geomagnetic Field ». Proceedings of the Bulgarian Academy of Sciences 75, no 11 (30 novembre 2022) : 1628–37. http://dx.doi.org/10.7546/crabs.2022.11.10.

Texte intégral
Résumé :
The North Atlantic Oscillation is one of the most influential climatic modes in the Northern Hemisphere. However, the mechanism(s) standing behind its wide spectra of variations is still unknown despite its numerous investigations. This paper presents evidence for a synchronization between secular variations of geomagnetic field intensity and NAO long-term variability. Analysis of the connectivity between geomagnetic secular variations and the sea-level pressure – point by point, in a grid with resolution 10 [deg] in latitude and longitude – reveals that the strength of their relation is unevenly distributed over the Northern Hemisphere. Based on the machine learning analysis over the period 1900–2019, we found that there are two centres of significant geomagnetic-pressure relations – the weaker of them is placed slightly north of Iceland, and the stronger one is in a close proximity to Azores islands. The suggested mechanism for geomagnetic influence on the near surface climatic conditions includes the geomagnetic modulation of energetic particles precipitating in Earth's atmosphere, and their impact on the lower stratospheric ozone. The analysis of ozone-pressure relation shows, in addition, reasonable similarities with the spatial patterns of geomagnetic-pressure relations.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Korte, Monika, et Raimund Muscheler. « Centennial to millennial geomagnetic field variations ». Journal of Space Weather and Space Climate 2 (2012) : A08. http://dx.doi.org/10.1051/swsc/2012006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Reshetnyak, M. Yu. « Latitudinal Variations of the Geomagnetic Field ». Izvestiya, Physics of the Solid Earth 59, no 2 (avril 2023) : 115–19. http://dx.doi.org/10.1134/s1069351323020106.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lepidi, Stefania, Lili Cafarella, Patrizia Francia, Andrea Piancatelli, Manuela Pietrolungo, Lucia Santarelli et Stefano Urbini. « A study of geomagnetic field variations along the 80° S geomagnetic parallel ». Annales Geophysicae 35, no 1 (24 janvier 2017) : 139–46. http://dx.doi.org/10.5194/angeo-35-139-2017.

Texte intégral
Résumé :
Abstract. The availability of measurements of the geomagnetic field variations in Antarctica at three sites along the 80° S geomagnetic parallel, separated by approximately 1 h in magnetic local time, allows us to study the longitudinal dependence of the observed variations. In particular, using 1 min data from Mario Zucchelli Station, Scott Base and Talos Dome, a temporary installation during 2007–2008 Antarctic campaign, we investigated the diurnal variation and the low-frequency fluctuations (approximately in the Pc5 range, ∼ 1–7 mHz). We found that the daily variation is clearly ordered by local time, suggesting a predominant effect of the polar extension of midlatitude ionospheric currents. On the other hand, the pulsation power is dependent on magnetic local time maximizing around magnetic local noon, when the stations are closer to the polar cusp, while the highest coherence between pairs of stations is observed in the magnetic local nighttime sector. The wave propagation direction observed during selected events, one around local magnetic noon and the other around local magnetic midnight, is consistent with a solar-wind-driven source in the daytime and with substorm-associated processes in the nighttime.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Akpaneno, Aniefiok, et O. N. Abdulahi. « INVESTIGATING THE VARIATIONS OF HORIZONTAL (H) AND VERTICAL (Z) COMPONENTS OF THE GEOMAGNETIC FIELD AT SOME EQUATORIAL ELECTROJET STATIONS ». FUDMA JOURNAL OF SCIENCES 5, no 1 (14 juillet 2021) : 539–57. http://dx.doi.org/10.33003/fjs-2021-0501-661.

Texte intégral
Résumé :
This research is monitoring equatorial geomagnetic current which causes atmospheric instabilities and affects high frequency and satellite communication. It presents the variations of Horizontal (H) and vertical (Z) component of the geomagnetic field at some Equatorial Electrojet (EEJ) Stations during quiet days. Data from five (5) observatories along the magnetic equator were used for the study. Daily baseline values for each of the geomagnetic element 𝐻 and Z were obtained. The monthly average of the diurnal variation and the seasonal variations were found. Results showed that the variations of the geomagnetic element of both H and Z differ in magnitudes from one stations to another along the geomagnetic Equator due to the differences of their geomagnetic latitude. The Amplitude curves for Z) are seen to be conspicuously opposite to that of H), and there is absence of CEJ in Z- Component but present in H- Components. The values during the pre-sunrise hours are low compare to daytime hours. Minimum variations of dH was observed during June solstice and maximum variations was observed during Equinox season. This study shows that daily variations of (H) and (Z) occur in all the stations. The enhancement in H is as a result of EEJ current.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Akpaneno, Aniefiok F., et O. N. Abdullahi. « INVESTIGATING THE VARIATIONS OF HORIZONTAL (H) AND VERTICAL (Z) COMPONENTS OF THE GEOMAGNETIC FIELD AT SOME EQUATORIAL ELECTROJET STATIONS ». FUDMA JOURNAL OF SCIENCES 5, no 2 (16 juillet 2021) : 531–48. http://dx.doi.org/10.33003/fjs-2021-0502-667.

Texte intégral
Résumé :
This research is monitoring equatorial geomagnetic current which causes atmospheric instabilities and affects high frequency and satellite communication. It presents the variations of Horizontal (H) and vertical (Z) component of the geomagnetic field at some Equatorial Electrojet (EEJ) Stations during quiet days. Data from five (5) observatories along the magnetic equator were used for the study. Daily baseline values for each of the geomagnetic element 𝐻 and Z were obtained. The monthly average of the diurnal variation and the seasonal variations were found. Results showed that the variations of the geomagnetic element of both H and Z differ in magnitudes from one stations to another along the geomagnetic Equator due to the differences of their geomagnetic latitude. The Amplitude curves for Z) are seen to be conspicuously opposite to that of H), and there is absence of CEJ in Z- Component but present in H- Components. The values during the pre-sunrise hours are low compare to daytime hours. Minimum variations of dH was observed during June solstice and maximum variations was observed during Equinox season. This study shows that daily variations of (H) and (Z) occur in all the stations. The enhancement in H is as a result of EEJ current
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Geomagnetic field variations"

1

Turton, Ian. « Temporal and spatial variations of the geomagnetic field, up to a timescale of 10⁵ years ». Thesis, University of Edinburgh, 1992. http://hdl.handle.net/1842/11472.

Texte intégral
Résumé :
This thesis comprises two parts. The main part is involved with laboratory studies of the palaeosecular variation of the geomagnetic field as recorded in lake sediments. The natural remanent magnetization of the sediments cored from the two Italian maar lakes, Lago di Monticchio and Lago di Martignano, has been studied. Further studies were carried out on the sediments of Lago di Martignano to determine the cause of large variations in the magnetic intensity of the sediments with an age of ˜ 6000 years BP and it was concluded that this was caused by the arrival of Neolithic man and the advent of agriculture in the catchment area. The directional record for this lake was also compared to the established record for north west Europe. Several declination and inclination features could be correlated between the two records. The record from Lago di Martignano can be accepted as a regional palaeomagnetic reference curve for central Italy. Cores up to 50m long were taken from Lago di Monticchio. Whilst not yet firmly dated, it is agreed that this record spans the last 250,000 years. A relative palaeointensity record has been calculated and spectral analysis has been carried out. It is concluded provisionally that the palaeointensity recorded in the sediments was effected by the astronomical frequencies associated with precession of the earth, the eccentricity and the obliquity of the Earth's orbit. The second part of this thesis is concerned with modelling the palaeosecular variations as recorded in sediments around the world through the Holocene, i.e. the last 10,000 years. The properties of sequential secular variation records from sediments are compared with palaeosecular variation scatter determined from sets of lava flows. It is concluded that a comparison between PSV recorded in lava flows and lake sediments is valid.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nakano, Shinya. « Variations of large-scale field-aligned currents and their effects on mid-latitude geomagnetic disturbances ». 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/147822.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Saturnino, Diana. « Une méthode d’observatoires virtuels pour décrire les variations temporelles du champ géomagnétique et applications aux mesures de la mission Swarm ». Nantes, 2015. https://archive.bu.univ-nantes.fr/pollux/show/show?id=181308db-f221-4fd6-84dc-ccfc2af8e6cd.

Texte intégral
Résumé :
A description of the temporal variations of the main geomagnetic field (i. E. , the secular variation, or SV) is crucial to the understanding of core dynamo generation. It is known with high accuracy at observatory locations, which are globally unevenly located, hampering the determination of a global pattern of these variations. Satellites have allowed global surveys of the field and its SV. Their data has been used by global spherical harmonic models using data selection criteria to reduce external contributions. SV small spatial scales may not be well described by these models, and can show significant errors compared to ground measurements. This study attempts to extract temporal variation time series from satellite measurements as it is done at observatory locations. We follow a Virtual Observatories (VO) approach, defining a global mesh of VOs at satellite altitude. We apply an Equivalent Source Dipole (ESD) technique. For each VO and a given time interval all measurements are reduced to a unique location, leading to time series similar to those available at the ground. Synthetic data is first used to validate the approach. We then apply our scheme to Swarm mission measurements. We locally compare the VO-ESD derived time series to ground observations and to satellite-based model predictions. The approach is able to describe field's time variations at local scales. The global mesh of VO time series is used to derive global spherical harmonic models. For a simple parametrization the model well describes the trend of the magnetic field both at satellite altitude and at the surface. Nevertheless more complex modelling can be made to properly profit of VO-ESD time series
La description des variations temporelles du champ géomagnétique (variation séculaire ou SV) est cruciale pour la compréhension de la dynamo. La SV est connue avec une grande précision dans les observatoires magnétiques, qui ont une répartition spatiale inégale. Les satellites donnent des observations globales du champ et de sa SV. Leurs données sont utilisées par les modèles globaux en harmoniques sphériques. Les petites échelles spatiales de la SV décrites par ces modèles peuvent montrer des erreurs par rapport aux mesures des observatoires. Dans cette étude je tente d'extraire des séries temporelles avec des mesures satellitaires comme dans les observatoires. L'approche des observatoires virtuels (VO) est suivie. Un maillage global de volumes à l'altitude du satellite est défini. Pour cela, la technique des Equivalent Source Dipoles (ESD) est appliquée. Pour chaque VO et intervalle de temps donné, toutes les mesures sont réduites à un endroit unique, menant à des séries temporelles similaires à celles disponibles dans les observatoires à la surface. L’approche est validée avec des donnes synthétiques et puis appliquée aux mesures de la mission Swarm. Les séries temporelles VO-ESD sont comparées à celles à la surface et aux prédictions par un modèle. L'approche décrit correctement les variations temporelles du champ à l'échelle locale. Un maillage global de VO est construit et utilisé pour obtenir des modèles globaux. Les modèles sont capables de décrire l'évolution du champ magnétique à la fois à l'altitude du satellite et à la surface. Toutefois des modélisations plus complexes pourront être faites pour profiter des séries temporelles VO-ESD
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ménabréaz, Lucie. « Production atmosphérique du nucléide cosmogénique 10 Be et variations de l'intensité du champ magnétique terrestre au cours des derniers 800 000 ans ». Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4316/document.

Texte intégral
Résumé :
Parmi les méthodes de reconstitution de l'histoire du champ géomagnétique, l'étude des variations de la production atmosphérique d'isotopes cosmogéniques s'est récemment développé. Cette production est modulée au premier ordre et aux échelles multimillénaires par l'intensité du champ géomagnétique. Son enregistrement dans les archives de l'environnement terrestre en apporte une lecture indépendante, donc complémentaire des méthodes paléomagnétiques. Ce travail vise à retracer les changements de taux de production de 10Be enregistrés dans les sédiments marins, afin de restituer les variations du moment géomagnétique depuis environ 800 000 ans. Les rapports 10Be/9Be authigéniques mesurés par Spectrométrie de Masse par Accélérateur le long de trois séquences de différentes latitudes, permettent de caractériser la production globale de 10Be sur deux intervalles de temps. (1) Lors de la baisse du moment dipolaire associée à l'excursion Laschamp (~41 000 ans BP), la surproduction de 10Be à 38°N et 2°S, confirmée par des mesures de 10Be/230Thxs, est identique à celle restituée dans les glaces du Groenland. (2) L'étude menée sur une carotte prélevée à l'équateur couvrant l'intervalle 800 000 – 250 000 ans BP (époque Brunhes), révèle les phases successives de surproduction globale de 10Be déclenchées par les chutes de moment dipolaires liées à l'inversion Brunhes-Matuyama d'une part et d'autre part à une dizaine d'excursions documentées. La calibration de ces enregistrements avec des valeurs absolues disponibles dans la littérature permet la quantification des moments dipolaires
Among the methods for reconstructing the geomagnetic field history, studying the variations in cosmogenic isotopes production in the atmosphere has recently developed. At multi millennial scales, this production is mainly modulated by the geomagnetic field intensity. Its record in terrestrial archives provides an independent reading to complement paleomagnetic methods. This work aims at tracing the changes in 10Be production rates recorded in marine sediments, in order to reproduce the geomagnetic variations for the past 800,000 years. Authigenic 10Be/9Be ratios measured using Accelerator Mass Spectrometry along three sequences from different latitudes, characterize the 10Be global production during two time intervals. (1) During the dipole moment low associated with the Laschamp excursion (~ 41,000 years BP), the 10Be overproduction at 38°N and 2°S, confirmed by measurements of 10Be/230Thxs, is identical to that recorded in the Greenland ice sheet. (2) Studying a core collected near the equator and covering the interval 800,000 – 250,000 years BP (Brunhes epoch) reveals the successive phases of global 10Be overproductions triggered by dipole moment lows associated to the Brunhes-Matuyama reversal and also to several other documented excursions. Calibrating these records with absolute values available in the literature allows quantifying dipole moments. These are then compared to paleomagnetic reference reconstructions over the same time series. Bearing out the number and extent of these dipole field lows allows considering to refine their chronology before using their features to get a better understanding of the geodynamo rhythms throughout the last Million years
Styles APA, Harvard, Vancouver, ISO, etc.
5

McArdle, Nicholas John. « Long term variation in geomagnetic field intensity and terrestrial planet development ». Thesis, University of Liverpool, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.569142.

Texte intégral
Résumé :
Knowledge of the intensity of the Earth's magnetic field throughout geological time can deliver a wealth of information regarding the development of the planet. The nature of the geomagnetic field is dependent on processes that occur deep in the Earth's core. By analysing long period changes in geomagnetic field intensity inferences can be made about conditions in the Earth's interior far back into Earth history. The microwave palaeointensity technique is a relatively recent addition to palaeomagnetic investigation. High-frequency microwaves, which are resonant with the constituent magnetic system of a rock, are used to isolate and progressively remove the magnetisation of samples acquired at the time of formation in a controlled manner. By exciting the magnetic system directly, thermal-type experiments can be conducted, whilst minimising the risk of chemical alteration, which is a major cause of experimental failure.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wardinski, Ingo. « Core surface flow models from decadal and subdecadal secular variation of the main geomagnetic field ». Potsdam : Geoforschungszentrum, 2005. http://www.gfz-potsdam.de/bib/pub/str0507/0507.htm.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wardinski, Ingo. « Core surface flow models from decadal and subdecadal secular variation of the main geomagnetic field ». [S.l.] : [s.n.], 2004. http://www.diss.fu-berlin.de/2005/70/index.html.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gratton, Martin Nicholas. « Variation of geomagnetic field intensity over the last 45,000 years in Hawaii using the microwave palaeointensity technique ». Thesis, University of Liverpool, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402681.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tulloch, Andrew Malcolm. « A study of recent secular variation of the geomagnetic field as recorded by lavas from Mount Vesuvius and the Canary Islands ». Thesis, University of Liverpool, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317294.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wardinski, Ingo [Verfasser]. « Core surface flow models from decadal and subdecadal secular variation of the main geomagnetic field / Geoforschungszentrum Potsdam. Vorgelegt von Ingo Wardinski ». Potsdam : Geoforschungszentrum, 2005. http://d-nb.info/974254991/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Geomagnetic field variations"

1

Karl-Heinz, Glassmeier, Soffel H. Chr et Negendank Jörg F. W, dir. Geomagnetic field variations. Berlin : Springer, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Karl-Heinz, Glassmeier, Soffel H. Chr et Negendank Jörg F. W, dir. Geomagnetic field variations. Berlin : Springer, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Karl-Heinz, Glassmeier, Soffel H. Chr et Negendank Jörg F. W, dir. Geomagnetic field variations. Berlin : Springer, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Glaβmeier, Karl-Heinz, Heinrich Soffel et Jörg F. W. Negendank. Geomagnetic Field Variations. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76939-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

1926-, Campbell Wallace H., dir. Quiet daily geomagnetic fields. Basel : Birkhäuser Verlag, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

L, Parker R., et United States. National Aeronautics and Space Administration., dir. Statistics of the geomagnetic secular variation for the past 5Ma. [Washington, DC : National Aeronautics and Space Administration, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Constable, Catherine. Final report on geomagnetic field models incorporating physical constraints on the secular variation. [Washington, DC : National Aeronautics and Space Administration, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Xanthakis, John N. Geomagnetic field variation as inferred from archaeomagnetism in Greece and palaeomagnetism in British lake sediments since 7000 B.C. Athēnai : Grapheion Dēmosieumatōn tēs Akadēmias Athēnōn, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Brodscholl, Arnold. Variationen des Erdmagnetfeldes an der GvN-Station, Antarktika : Deren Nutzung für ein elektromagnetisches Induktionsverfahren zur Erkennung zweidimensionaler Leitfähigkeitsanomalien sowie zur Darstellung von Einflüssen ionosphärischer Stromsysteme = Variations of the earthmagnetic field at GVN-Station, Antarctica : applied to the methods of the earthmagnetic deep sounding to detect two-dimensional anomalies of the conductivity and for the demonstration of the influencies [sic] of ionospheric current systems. Bremerhaven : Alfred-Wegener-Institut für Polar- und Meeresforschung, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Brodscholl, Arnold. Variationen des Erdmagnetfeldes an der GvN-Station, Antarktika : Deren Nutzung für ein elektromagnetisches Induktionsverfahren zur Erkennung zweidimensionaler Leitfähigkeitsanomalien sowie zur Darstellung von Einflüssen ionosphärischer Stromsysteme = Variations of the earthmagnetic field at GVN-Station, Antarctica : applied to the methods of the earthmagnetic deep sounding to detect two-dimensional anomalies of the conductivity and for the demonstration of the influencies [sic] of ionospheric current systems. Bremerhaven, Bundesrepublik Deutschland : Alfred-Wegener-Institut für Polar- und Meeresforschung, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Geomagnetic field variations"

1

Fabian, Karl, et Roman Leonhardt. « Records of Paleomagnetic Field Variations ». Dans Geomagnetic Field Variations, 65–106. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76939-2_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wicht, Johannes, Stephan Stellmach et Helmut Harder. « Numerical Models of the Geodynamo : From Fundamental Cartesian Models to 3D Simulations of Field Reversals ». Dans Geomagnetic Field Variations, 107–58. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76939-2_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Vogt, Joachim, Miriam Sinnhuber et May-Britt Kallenrode. « Effects of Geomagnetic Variations on System Earth ». Dans Geomagnetic Field Variations, 159–208. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76939-2_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lowes, F. J. « The Geomagnetic Field over the Last 200 Years ». Dans Secular Solar and Geomagnetic Variations in the Last 10,000 Years, 367–79. Dordrecht : Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3011-7_23.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Creer, K. M. « Geomagnetic Field and Radiocarbon Activity Through Holocene Time ». Dans Secular Solar and Geomagnetic Variations in the Last 10,000 Years, 381–97. Dordrecht : Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3011-7_24.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tarling, D. H. « Secular Variations of the Geomagnetic Field — The Archaeomagnetic Record ». Dans Secular Solar and Geomagnetic Variations in the Last 10,000 Years, 349–65. Dordrecht : Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3011-7_22.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ponyavin, D. I. « Global Solar Magnetic Field Evolution Inferred from Geomagnetic Variations ». Dans The High Latitude Heliosphere, 185–88. Dordrecht : Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0167-7_31.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mandea, Mioara, Richard Holme, Alexandra Pais, Katia Pinheiro, Andrew Jackson et Giuliana Verbanac. « Geomagnetic Jerks : Rapid Core Field Variations and Core Dynamics ». Dans Terrestrial Magnetism, 147–75. New York, NY : Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7955-1_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Donadini, F., M. Korte et C. Constable. « Millennial Variations of the Geomagnetic Field : from Data Recovery to Field Reconstruction ». Dans Terrestrial Magnetism, 219–46. New York, NY : Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7955-1_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tyupkin, Yu S., et A. Ya Feldstein. « Correlation Dimension of the Strange Attractor for Geomagnetic Field Variations ». Dans Nonlinear Dynamics and Predictability of Geophysical Phenomena, 103–7. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm083p0103.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Geomagnetic field variations"

1

Kaji, Chinmaya V., Randy C. Hoover et Shankarachary Ragi. « Underwater Navigation using Geomagnetic Field Variations ». Dans 2019 IEEE International Conference on Electro Information Technology (EIT). IEEE, 2019. http://dx.doi.org/10.1109/eit.2019.8834192.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Buga, Arunas, Simona Einorytė, Romuald Obuchovski, Vytautas Puškorius et Petras Petroškevicius. « Analysis of Secular Variations of Geomagnetic Field in Lithuania Based on the Survey in 2016 ». Dans Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.170.

Texte intégral
Résumé :
Lithuania is successfully integrated in the European geomagnetic field research activities. Six secular variation research stations were established in 1999 and precise geomagnetic field measurements were performed there in 1999, 2001, 2004, 2007 and 2016. Obtained diurnal magnetic field variations at measuring station and neighbouring observatories were analysed. All measurements are reduced to the mean of the year using data from geomagnetic observatory of Belsk. Based on the measured data the analysis of geomagnetic field parameter secular changes was performed. Results of the presented research are useful for updating the old geomagnetic data as well as for estimation of accuracy of declination model.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kühn, G. J., et L. Loubser. « External Geomagnetic Field Variations And Magnetic Surveys ». Dans 1st SAGA Biennial Conference and Exhibition. European Association of Geoscientists & Engineers, 1989. http://dx.doi.org/10.3997/2214-4609-pdb.222.029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Freire, L., S. R. Laranja et L. Benyosef. « Geomagnetic Field Variations in the Equatorial Electrojet Sector ». Dans Simpósio Brasileiro de Geofísica. Sociedade Brasileira de Geofísica, 2016. http://dx.doi.org/10.22564/7simbgf2016.041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Delipetrov, Todor. « GEOMAGNETIC FIELD AND SECULAR VARIATIONS OF THE ASTRONOMICAL PARAMETARS ». Dans 13th SGEM GeoConference on SCIENCE AND TECHNOLOGIES IN GEOLOGY, EXPLORATION AND MINING. Stef92 Technology, 2013. http://dx.doi.org/10.5593/sgem2013/ba1.v2/s05.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sivokon, V. P., N. V. Cherneva, S. Y. Khomutov et A. S. Serovetnikov. « Active experiments in the ionosphere and geomagnetic field variations ». Dans 20th International Symposium on Atmospheric and Ocean Optics : Atmospheric Physics, sous la direction de Oleg A. Romanovskii. SPIE, 2014. http://dx.doi.org/10.1117/12.2074512.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Clem, John. « South Pole Neutron Monitor Sensitivity to Geomagnetic Field Variations ». Dans The 34th International Cosmic Ray Conference. Trieste, Italy : Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.236.0143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mandrikova, Oksana, et Anastasia Rodomanskay. « Method for detecting geomagnetic disturbances based on the wavelet model of geomagnetic field variations ». Dans 2021 International Conference on Information Technology and Nanotechnology (ITNT). IEEE, 2021. http://dx.doi.org/10.1109/itnt52450.2021.9649062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Koryakin, Dmitry. « Correction of Geomagnetic Field Variations in Marine Magnetic Surveys Using Observatory and Model Geomagnetic Data ». Dans II PAN AMERICAN WORKSHOP ON GEOMAGNETISM – II PANGEO. Recife, Brazil : Even3, 2018. http://dx.doi.org/10.29327/2pangeo.a5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chamati, M., et B. Andonov. « Effects of a Strong Thunderstorm on the ULF Geomagnetic Field Variations ». Dans 11th Congress of the Balkan Geophysical Society. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202149bgs5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Geomagnetic field variations"

1

Nikitina, L., et L. Trichtchenko. Extreme values statistical assessment for geomagnetic and geoelectric field variations for Alberta. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296956.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kleimenova, Natalia G., A. Odzimek, S. Michnowski et M. Kubicki. Geomagnetic Storms and Substorms as Space Weather I nfluence on Atmospheric Electric Field Variations. Balkan, Black Sea and Caspian Sea Regional Network on Space Weather Studies, novembre 2018. http://dx.doi.org/10.31401/sungeo.2018.01.14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Onovughe, Elvis. Usage of RC index as a Good Representation for Characterising Rapid Variation Signals in Geomagnetic Field Studiess. Balkan, Black sea and Caspian sea Regional Network for Space Weather Studies, avril 2018. http://dx.doi.org/10.31401/sungeo.2018.01.11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

BARKHATOV, NIKOLAY, et SERGEY REVUNOV. A software-computational neural network tool for predicting the electromagnetic state of the polar magnetosphere, taking into account the process that simulates its slow loading by the kinetic energy of the solar wind. SIB-Expertise, décembre 2021. http://dx.doi.org/10.12731/er0519.07122021.

Texte intégral
Résumé :
The auroral activity indices AU, AL, AE, introduced into geophysics at the beginning of the space era, although they have certain drawbacks, are still widely used to monitor geomagnetic activity at high latitudes. The AU index reflects the intensity of the eastern electric jet, while the AL index is determined by the intensity of the western electric jet. There are many regression relationships linking the indices of magnetic activity with a wide range of phenomena observed in the Earth's magnetosphere and atmosphere. These relationships determine the importance of monitoring and predicting geomagnetic activity for research in various areas of solar-terrestrial physics. The most dramatic phenomena in the magnetosphere and high-latitude ionosphere occur during periods of magnetospheric substorms, a sensitive indicator of which is the time variation and value of the AL index. Currently, AL index forecasting is carried out by various methods using both dynamic systems and artificial intelligence. Forecasting is based on the close relationship between the state of the magnetosphere and the parameters of the solar wind and the interplanetary magnetic field (IMF). This application proposes an algorithm for describing the process of substorm formation using an instrument in the form of an Elman-type ANN by reconstructing the AL index using the dynamics of the new integral parameter we introduced. The use of an integral parameter at the input of the ANN makes it possible to simulate the structure and intellectual properties of the biological nervous system, since in this way an additional realization of the memory of the prehistory of the modeled process is provided.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie