Littérature scientifique sur le sujet « Genome conformation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Genome conformation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Genome conformation"
Wang, Yanbo, John Mallon, Haobo Wang, Digvijay Singh, Myung Hyun Jo, Boyang Hua, Scott Bailey et Taekjip Ha. « Real-time observation of Cas9 postcatalytic domain motions ». Proceedings of the National Academy of Sciences 118, no 2 (21 décembre 2020) : e2010650118. http://dx.doi.org/10.1073/pnas.2010650118.
Texte intégralFujishiro, Shin, Naoko Tokuda et Masaki Sasai. « 2P267 Computational chromosome conformation sampling of human diploid genome(21B. Genome biology:Genome structure,Poster) ». Seibutsu Butsuri 54, supplement1-2 (2014) : S239. http://dx.doi.org/10.2142/biophys.54.s239_3.
Texte intégralSanford, Thomas J., Harriet V. Mears, Teodoro Fajardo, Nicolas Locker et Trevor R. Sweeney. « Circularization of flavivirus genomic RNA inhibits de novo translation initiation ». Nucleic Acids Research 47, no 18 (8 août 2019) : 9789–802. http://dx.doi.org/10.1093/nar/gkz686.
Texte intégralShepherd, Jeremiah J., Lingxi Zhou, William Arndt, Yan Zhang, W. Jim Zheng et Jijun Tang. « Exploring genomes with a game engine ». Faraday Discuss. 169 (2014) : 443–53. http://dx.doi.org/10.1039/c3fd00152k.
Texte intégralBrigham, Benjamin S., Jonathan P. Kitzrow, Joshua-Paolo C. Reyes, Karin Musier-Forsyth et James B. Munro. « Intrinsic conformational dynamics of the HIV-1 genomic RNA 5′UTR ». Proceedings of the National Academy of Sciences 116, no 21 (8 mai 2019) : 10372–81. http://dx.doi.org/10.1073/pnas.1902271116.
Texte intégralYou, Chuihuai, Tianzhen Cui, Chang Zhang, Shoujian Zang, Yachun Su et Youxiong Que. « Assembly of the Complete Mitochondrial Genome of Gelsemium elegans Revealed the Existence of Homologous Conformations Generated by a Repeat Mediated Recombination ». International Journal of Molecular Sciences 24, no 1 (28 décembre 2022) : 527. http://dx.doi.org/10.3390/ijms24010527.
Texte intégralGu, Bowen, Ruifan Sun, Xingqiang Fang, Jipan Zhang, Zhongquan Zhao, Deli Huang, Yuanping Zhao et Yongju Zhao. « Genome-Wide Association Study of Body Conformation Traits by Whole Genome Sequencing in Dazu Black Goats ». Animals 12, no 5 (23 février 2022) : 548. http://dx.doi.org/10.3390/ani12050548.
Texte intégralBentley, Kirsten, Jonathan P. Cook, Andrew K. Tuplin et David J. Evans. « Structural and functional analysis of the roles of the HCV 5′ NCR miR122-dependent long-range association and SLVI in genome translation and replication ». PeerJ 6 (6 novembre 2018) : e5870. http://dx.doi.org/10.7717/peerj.5870.
Texte intégralTjong, Harianto, Wenyuan Li, Reza Kalhor, Chao Dai, Shengli Hao, Ke Gong, Yonggang Zhou et al. « Population-based 3D genome structure analysis reveals driving forces in spatial genome organization ». Proceedings of the National Academy of Sciences 113, no 12 (7 mars 2016) : E1663—E1672. http://dx.doi.org/10.1073/pnas.1512577113.
Texte intégralBolovan-Fritts, Cynthia A., Edward S. Mocarski et Jean A. Wiedeman. « Peripheral Blood CD14+ Cells From Healthy Subjects Carry a Circular Conformation of Latent Cytomegalovirus Genome ». Blood 93, no 1 (1 janvier 1999) : 394–98. http://dx.doi.org/10.1182/blood.v93.1.394.
Texte intégralThèses sur le sujet "Genome conformation"
Nicoletti, Chiara. « Genome conformation and transcription regulation : methods and applications ». Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3424943.
Texte intégralL’organizzazione tridimensionale della cromatina all’interno del nucleo è alla base della regolazione funzionale del genoma, sia a livello macroscopico, dove i cromosomi occupano spazi distinti (territori cromosomici), sia a livello di singole fibre, dove la cromatina si organizza in domini compartimentalizzati (Topologically Associating Domains, TADs), dentro i quali avviene la formazione di interazioni a corto raggio (come quelle che sussistono tra promotori e regioni regolatrici). Le tecniche denominate Chromosome Conformation Capture (3C) hanno permesso di investigare e caratterizzare i diversi livelli dell’organizzazione strutturale della cromatina all’interno del nucleo. In particolare, l’Hi-C, attraverso la combinazione del protocollo di 3C e del sequenziamento massivo, è in grado di restituire un’immagine completa dell’architettura della cromatina e dei contatti all’interno del genoma. Nonostante in questi ultimi anni siano stati resi disponibili diversi strumenti computazionali per l’analisi dei dati di Hi-C, non esiste tuttora un consenso su quale sia il metodo ottimale da usare. Una valutazione comparativa dei software per l'analisi dei dati Hi-C è quindi necessaria non solo per evidenziare i punti di forza e le debolezze dei vari metodi, ma anche per proporre linee guida utili all’utente medio. Per questo motivo ho applicato diversi approcci computazionali (6 per la caratterizzazione delle interazioni e 7 per identificare i TAD) a 6 set di dati pubblici di Hi-C, relativi a diverse specie e linee cellulari (H1-hESC, IMR90, linee cellulari linfoblastoidi ed embrioni di D. melanogaster), a differenti metodiche sperimentali (standard Hi-C, simplified Hi-C e In situ Hi-C) e analizzati a diverse risoluzioni. Inoltre, gli algoritmi sono stati applicati a dati simulati per determinare sensibilità e precisione di ogni metodo. I software differiscono sia per le fasi di analisi implementate sia per le strategie adottate in ciascun passaggio: l'allineamento della sequenza completa contro quello della sequenza “spezzata”, i filtri applicati, la normalizzazione implicita contro quella esplicita, l’arricchimento di interazione locale contro quello globale e l’individuazione di TAD ad uno o più livelli. I metodi variano molto a livello di prestazioni sia in termini quantitativi sia qualitativi, e richiedono di ottimizzare un’ampia gamma di parametri per funzionare correttamente. Nonostante, in generale, gli algoritmi per identificare i TAD si siano dimostrati più affidabili di quelli per trovare le interazioni, ci sono ancora dei limiti fondamentali nell’identificazione dei TAD, ad esempio nello studio dell’evoluzione di queste strutture nel tempo. Sebbene i meccanismi alla base della formazione dei TAD siano tuttora dibattuti, è innegabile che questi siano caratterizzati da pattern distintivi di interazione: in alcuni TAD possiamo osservare un segnale di interazione più omogeneo, mentre in altri l’interazione è più che altro evidente tra le regioni che lo delimitano. Per superare questi limiti, ho sviluppato un nuovo metodo per l’analisi dei TAD a partire da dati di Hi-C (TAD-AH), atto ad indagare un aspetto finora inesplorato dell'architettura del genoma: la quarta dimensione, ovvero come la struttura si evolve nel tempo in base a stimoli di varia natura (ad esempio durante il differenziamento). Per testare TAD-AH ho analizzato dati di Hi-C generati prima e dopo il trans-differenziamento di fibroblasti umani (IMR90) in cellule muscolari (mioblasti e miotubi) ad opera del principale regolatore delle cellule staminali muscolari, MYOD. L’integrazione dei dati di Hi-C con altri dati epigenomici e trascrittomici ha confermato che la caratterizzazione delle strutture identificate è coerente con lo scenario biologico in esame.
Boulos, Rasha. « Human genome segmentation into structural domains : from chromatin conformation data to nuclear functions ». Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1024/document.
Texte intégralThe replication program of about one half of mammalian genomes is characterized by megabase-sized replication U/N-domains. These domains are bordered by master replication origins (MaOris) corresponding to ~200 kb regions of open chromatin favorable for early initiation of replication and transcription. Thanks to recent high-throughput chromosome conformation capture technologies (Hi-C), 3D co-localization frequency matrices between all genome loci are now experimentally determined. It appeared that U/N-domains were related to the organization of the genome into structural units. In this thesis, we performed a combined analysis of human Hi-C data and replication timing profiles to further explore the structure/function relationships in the nucleus. This led us to describe novel large (>3 Mb) replication timing split-U domains also bordered by MaOris, to demonstrate that the replication wave initiated at MaOris only depends of the time during S phase and to show that chromatin folding is compatible with a 3D equilibrium in early-replicating euchromatin regions turning to a 2D equilibrium in the late-replicating heterochromatin regions associated to nuclear lamina. Representing Hi-C co-localization matrices as structural networks and deploying graph theoretical tools, we also demonstrated that MaOris are long-range interconnected hubs in the structural network, central to the 3D organization of the genome and we developed a novel multi-scale methodology based on graph wavelets to objectively delineate structural units from Hi-C data. This work allows us to discuss the relationship between replication domains and structural units across different human cell lines
Marie-Nelly, Hervé. « A probabilistic approach for genome assembly from high-throughput chromosome conformation capture data ». Paris 6, 2013. http://www.theses.fr/2013PA066714.
Texte intégralComputational methods are needed to assemble entire genomes from large numbers of short DNA strands. However, standard algorithms that piece together DNA strands with overlapping sequences face important limitations due, for example, to regions of repeated sequences, thus leaving many genome assemblies incomplete. We set out to develop a new methodology for genome assembly that promises to address some of these limitations. The method is based on Hi-C, a recent biochemical technique initially developed to analyse the 3D architecture of genomes. In standard Hi-C studies, a previously assembled genome is used to identify chimeric sequences among the ligation products, and map them to pairs of chromosomal loci, thereby yielding a genome-wide matrix of contact frequencies. Our method essentially reverses this approach: Hi-C data are used to test for the physical continuity of the chromatin fibre as expected from a set of DNA segments (representing either a complete or incomplete chromosomal set). This procedure improves genome assembly and/or identification of structural variants in re-sequenced genomes. Our approach uses a Bayesian framework that assigns probabilities to different assemblies based on the experimental Hi-C data and on laws describing the physical properties of chromosomes. We will explain the methodology and the developed algorithms and provide results of applications to simulated and real Hi-C data from mutant and natural structural variants of yeast and fungi. We also have developed algorithm that allow us to identify functional sequences in genomes from genome wide contact matrices
Marti, Marimon Maria Eugenia. « 3D genome conformation and gene expression in fetal pig muscle at late gestation ». Thesis, Toulouse, INPT, 2018. http://www.theses.fr/2018INPT0099.
Texte intégralIn swine breeding industry, sows have been selected for decades on their prolificacy in order to maximize meat production. However, this selection is associated with a higher mortality of newborns. In this context, the skeletal fetal muscle is essential for the piglet’s survival, as it is necessary for motor functions and thermoregulation. Besides, the three-dimensional structure of the genome has been proven to play an important role in gene expression regulation. Thus, in this project, we have focused our interest on the 3D genome conformation and gene expression in porcine muscle nuclei at late gestation. We have initially developed an original approach in which we combined transcriptome data with information of nuclear locations (assessed by 3D DNA FISH) of a subset of genes, in order to build gene co expression networks. This study has revealed interesting nuclear associations involving IGF2, DLK1 and MYH3 genes, and highlighted a network of muscle specific interrelated genes involved in the development and maturity of fetal muscle. Then, we assessed the global 3D genome conformation in muscle nuclei at 90 days and 110 days of gestation by using the High-throughput Chromosome Conformation Capture (Hi¬ C) method. This study has allowed identifying thousands of genomic regions showing significant differences in 3D conformation between the two gestational ages. Interestingly, some of these genomic regions involve the telomeric regions of several chromosomes that seem to be preferentially clustered at 90 days. More important, the observed changes in genome structure are significantly associated with variations in gene expression between the 90th and the 110th days of gestation
Nilsson, Johan. « Membrane protein topology : prediction, experimental mapping and genome-wide analysis / ». Stockholm, 2004. http://diss.kib.ki.se/2004/91-7349-963-3/.
Texte intégralJurneczko, Ewa. « Resolving intrinsically disordered proteins of the cancer genome with ion mobility mass spectrometry ». Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/8844.
Texte intégralSchröder, Wiebke [Verfasser]. « Athletic performance and conformation in Hanoverian warmblood horses - population genetic and genome-wide association analyses / Wiebke Schröder ». Hannover : Bibliothek der Tierärztlichen Hochschule Hannover, 2010. http://d-nb.info/1009653288/34.
Texte intégralLUCINI, FEDERICA. « Unconventional nuclear architecture in CD4+ T lymphocytes uncouples chromatin solubility from function ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/262913.
Texte intégralIn every eukaryotic cell, the genomic information coded in the DNA is packed into the small nuclear volume as chromatin, a complex of DNA and proteins. The ensemble of molecular mechanisms that organize chromatin compaction and allow the specific expression of the portions of genome useful for cell’s biological functions is known as the epigenome. As a result of epigenome activity, chromatin is folded and positioned in the nucleus in a cell-specific manner, generating areas of highly compacted, repressed, heterochromatin and areas of decondensed, gene-rich and transcriptionally active, euchromatin. In our work, we describe chromatin organization in different cell populations and analyse some of its implications in the physiological functions and pathological dysfunctions of the cell. In the first project, we focus on murine muscle stem cells lacking the nuclear structural protein Lamin A/C. We show their irregular differentiation program, due to a spreading of Polycomb group (PcG) of proteins repressors from their target genes over the flanking regions. The consequent alteration in gene expression cause premature exhaustion of quiescent stem cells and accumulation of intramuscular fat, resulting in accelerated senescence and muscular dystrophy progression. On the other hand, the progressive accumulation of a Lamin A aberrant form, Progerin, in Hutchinson-Gilford progeria syndrome (HGPS) also leads to chromatin structure disruption. In particular, it interferes with Lamina Associated Domains (LADs), the peripheral heterochromatin structures associated to the nuclear lamina. For our second project, we develop a new method, SAMMY-seq, based on high-throughput sequencing of chromatin fractions of different solubility. Thanks to this technology, we highlight early changes in heterochromatin accessibility in human HGPS primary fibroblasts. This early structural changes do not alter the deposition of the H3K9me3 heterochromatin mark but are associated with site-specific variations in the PcG-dependent transcriptional regulation. Finally, further improving SAMMY-seq technology, in our third project we describe an unconventional genome organization in resting human CD4+ T lymphocytes extracted from the peripheral blood of healthy donors. In these cells, heterochromatin is sensitive to DNAse digestion while euchromatin is resistant to serial processes of extraction. Preliminary analysis of the content of these compartments suggests that euchromatin contains, beside the actively transcribed genes, also inactive genes specific for lymphocyte activation. Further studies will elucidate the role of this unconventional chromatin organization in lymphocytes functions.
Lazar-Stefanita, Luciana. « Functional reorganization of the yeast genome during the cell cycle ». Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066400/document.
Texte intégralDecades of studies showed that chromatin structure is tightly linked to DNA related metabolic processes, through the dynamic regulation of a myriad of molecular factors. The proper organization of chromosomes is notably important to ensure the maintenance of DNA integrity during cell cycle progression. Using the model S. cerevisiae, the aim of my PhD project was to characterize to which extent chromatin reorganization during the cell cycle may influence chromosome stability. To do so, we first generated a comprehensive genome-wide study of the reorganization of yeast’s chromosomes during an entire cell cycle. This work, besides recapitulating expected chromosomal features of the replication and mitotic stages, led to the characterization of peculiar chromosome structures such as a DNA loop bridging the rDNA and the centromeres. The role of structural maintenance of chromosomes (SMC) complexes and of microtubules were thoroughly investigated. A second part of my work focused on describing features of the chromatin organization of cells that exited the proliferative cell cycle and entered into quiescence. We characterized the dense status of silenced heterochromatin at specific loci, such as telomeres, in relation to the silent information regulators (SIRs). Finally, we tried to achieve a better understanding of the functional interplay between chromosome stability and the 3D genome architecture during replication, by investigating the genomic stability at replication pausing sites. Overall, our results point at a striking plasticity of replication structures to different stresses. Future work aims to map replication-dependent chromosomal rearrangements on the genomic maps
Lajoie, Bryan R. « Computational Approaches for the Analysis of Chromosome Conformation Capture Data and Their Application to Study Long-Range Gene Regulation : A Dissertation ». eScholarship@UMMS, 2016. http://escholarship.umassmed.edu/gsbs_diss/833.
Texte intégralLivres sur le sujet "Genome conformation"
Frishman, Dmitrij. Modern genome annotation : The BioSapiens Network. New York : Springer, 2009.
Trouver le texte intégralModern genome annotation : The BioSapiens Network. New York : Springer, 2009.
Trouver le texte intégralR, Pennington S., et Dunn M. J, dir. Proteomics : From protein sequence to function. Oxford : BIOS, 2001.
Trouver le texte intégral1927-, Jollès Pierre, et Jörnvall Hans, dir. Proteomics in functional genomics : Protein structure analysis. Basel : Birkhäuser Verlag, 2000.
Trouver le texte intégralIntroduction to proteomics : Tools for the new biology. Totowa, NJ : Humana Press, 2002.
Trouver le texte intégralRyoiti, Kiyama, Shimizu Mitsuhiro, Hirose Susumu et Transworld Research Network (Trivandrum, India), dir. DNA structure, chromatin and gene expression. Trivandrum, Kerala, India : Transworld Research Network, 2006.
Trouver le texte intégralH, Lundstrom Kenneth, dir. Structural genomics on membrane proteins. Boca Raton : Taylor & Francis, 2006.
Trouver le texte intégralStructural Genomics. Elsevier, 2009.
Trouver le texte intégralJoachimiak, Andrzej. Structural Genomics, Part B. Elsevier Science & Technology Books, 2009.
Trouver le texte intégralStructural Genomics, Part B. Elsevier Science & Technology Books, 2009.
Trouver le texte intégralChapitres de livres sur le sujet "Genome conformation"
Zhigulev, Artemy, et Pelin Sahlén. « Targeted Chromosome Conformation Capture (HiCap) ». Dans Spatial Genome Organization, 75–94. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2497-5_5.
Texte intégralRebouissou, Cosette, Séphora Sallis et Thierry Forné. « Quantitative Chromosome Conformation Capture (3C-qPCR) ». Dans Spatial Genome Organization, 3–13. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2497-5_1.
Texte intégralNanni, Luca. « Computational Inference of DNA Folding Principles : From Data Management to Machine Learning ». Dans Special Topics in Information Technology, 79–88. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85918-3_7.
Texte intégralPolles, Guido, Nan Hua, Asli Yildirim et Frank Alber. « Genome Structure Calculation through Comprehensive Data Integration ». Dans Modeling the 3D Conformation of Genomes, 253–84. Boca Raton : Taylor & Francis, 2018. | Series : Series in computational biophysics ; 4 : CRC Press, 2019. http://dx.doi.org/10.1201/9781315144009-11.
Texte intégralPapale, Andrea, et Angelo Rvosay. « Structure and Microrheology of Genome Organization : From Experiments to Physical Modeling ». Dans Modeling the 3D Conformation of Genomes, 139–76. Boca Raton : Taylor & Francis, 2018. | Series : Series in computational biophysics ; 4 : CRC Press, 2019. http://dx.doi.org/10.1201/9781315144009-7.
Texte intégralVietri Rudan, Matteo, Suzana Hadjur et Tom Sexton. « Detecting Spatial Chromatin Organization by Chromosome Conformation Capture II : Genome-Wide Profiling by Hi-C ». Dans Methods in Molecular Biology, 47–74. New York, NY : Springer New York, 2016. http://dx.doi.org/10.1007/7651_2015_261.
Texte intégralDi Stefano, Marco, et Marc A. Marti-Renom. « Restraint-Based Modeling of Genomes and Genomic Domains ». Dans Modeling the 3D Conformation of Genomes, 233–52. Boca Raton : Taylor & Francis, 2018. | Series : Series in computational biophysics ; 4 : CRC Press, 2019. http://dx.doi.org/10.1201/9781315144009-10.
Texte intégralBrouwer, Rutger W. W., Mirjam C. G. N. van den Hout, Wilfred F. J. van IJcken, Eric Soler et Ralph Stadhouders. « Unbiased Interrogation of 3D Genome Topology Using Chromosome Conformation Capture Coupled to High-Throughput Sequencing (4C-Seq) ». Dans Methods in Molecular Biology, 199–220. New York, NY : Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6518-2_15.
Texte intégralKawaguchi, Akane, et Elly M. Tanaka. « Chromosome Conformation Capture for Large Genomes ». Dans Methods in Molecular Biology, 291–318. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2659-7_20.
Texte intégralDekker, Job. « Chromosome Folding : Contributions of Chromosome Conformation Capture and Polymer Physics ». Dans Modeling the 3D Conformation of Genomes, 1–18. Boca Raton : Taylor & Francis, 2018. | Series : Series in computational biophysics ; 4 : CRC Press, 2019. http://dx.doi.org/10.1201/9781315144009-1.
Texte intégralActes de conférences sur le sujet "Genome conformation"
« Maps of chromatin conformation in the cerebral cortex ». Dans Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/bgrs/sb-2022-056.
Texte intégral« Maps of chromatin conformation in the cerebral cortex ». Dans Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-056.
Texte intégralNagpal, S., V. Krishna, X. Yin, D. Pocalyko, A. Walsh, K. Bachman, I. Anderson et L. Madakamutil. « OP0289 Integration of chromatin conformation, transcriptome and genome-wide landscape of brd2 and brd4 binding motifs identifies mechanisms of bet inhibitor action in rheumatoid arthritis synovial fibroblasts ». Dans Annual European Congress of Rheumatology, EULAR 2018, Amsterdam, 13–16 June 2018. BMJ Publishing Group Ltd and European League Against Rheumatism, 2018. http://dx.doi.org/10.1136/annrheumdis-2018-eular.7388.
Texte intégralXu, Yangqing, et Gang Bao. « Protein Conformational Changes Under Applied Forces ». Dans ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0408.
Texte intégral« 3D-MAGs – spatial conformations of individual microbial genomes reconstructed from Hi-C metagenomes ». Dans Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-065.
Texte intégral« Conformational dynamics in methylated DNA repair by human Fe(II)/alpha-ketoglutarate dependent dioxygenases ALKBH2 and ALKBH3 ». Dans Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-352.
Texte intégral« The pre-steady state analysis of human terminal deoxynucleotidyltransferase conformational dynamics under DNA synthesis ». Dans Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-591.
Texte intégral« Application of X-Ray, SAXS and essential dynamics simulations to study conformational transitions of oligopeptidase B ». Dans Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-155.
Texte intégralKim, Moon K., Byeongsoo Lim et Wing Kam Liu. « Multiscale Elastic Network Model for Macromolecular Machines ». Dans ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13090.
Texte intégralGeddes, V. A., G. V. Louie, G. D. Brayer et R. T. A. MacGillivray. « MOLECULAR BASIS OF HEMOPHILIA B : IDENTIFICATION OF THE DEFECT IN FACTOR IX VANCOUVER ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643872.
Texte intégralRapports d'organisations sur le sujet "Genome conformation"
Prusky, Dov, Nancy P. Keller et Amir Sherman. global regulation of mycotoxin accumulation during pathogenicity of Penicillium expansum in postharvest fruits. United States Department of Agriculture, janvier 2014. http://dx.doi.org/10.32747/2014.7600012.bard.
Texte intégralMcElwain, Terry F., Eugene Pipano, Guy H. Palmer, Varda Shkap, Stephn A. Hines et Wendy C. Brown. Protection of Cattle against Babesiosis : Immunization against Babesia bovis with an Optimized RAP-1/Apical Complex Construct. United States Department of Agriculture, septembre 1999. http://dx.doi.org/10.32747/1999.7573063.bard.
Texte intégral